These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

817 related articles for article (PubMed ID: 12164587)

  • 1. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation.
    Smithies DJ; Lindmo T; Chen Z; Nelson JS; Milner TE
    Phys Med Biol; 1998 Oct; 43(10):3025-44. PubMed ID: 9814533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of improved depth penetration in dual-axis optical coherence tomography: a Monte Carlo study.
    Zhao Y; Chu KK; Jelly ET; Wax A
    J Biophotonics; 2019 Jun; 12(6):e201800383. PubMed ID: 30701684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach.
    Kirillin M; Meglinski I; Kuzmin V; Sergeeva E; Myllylä R
    Opt Express; 2010 Oct; 18(21):21714-24. PubMed ID: 20941071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media.
    Yao G; Wang LV
    Phys Med Biol; 1999 Sep; 44(9):2307-20. PubMed ID: 10495123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion in a grating-based optical delay line for optical coherence tomography.
    Niblack WK; Schenk JO; Liu B; Brezinski ME
    Appl Opt; 2003 Jul; 42(19):4115-8. PubMed ID: 12868854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.
    Malektaji S; Lima IT; Escobar I MR; Sherif SS
    Comput Methods Programs Biomed; 2017 Oct; 150():97-105. PubMed ID: 28859833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penetration depth of low-coherence enhanced backscattered light in subdiffusion regime.
    Subramanian H; Pradhan P; Kim YL; Backman V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041914. PubMed ID: 17500928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Monte Carlo simulation of frequency-domain optical coherence tomography.
    Wang Y; Bai L
    Int J Numer Method Biomed Eng; 2019 Apr; 35(4):e3177. PubMed ID: 30690893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of quantitative attenuation and backscattering coefficient measurements by optical coherence tomography in the concentration-dependent and multiple scattering regime.
    Almasian M; Bosschaart N; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2015; 20(12):121314. PubMed ID: 26720868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of image artefacts on phase conjugation with spectral domain optical coherence tomography.
    Kanngiesser J; Roth B
    Opt Express; 2020 Jun; 28(12):18224-18240. PubMed ID: 32680023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The Acceleration of Monte Carlo Simulation for Optical Transmission in Large Space Biological Tissue].
    Yang X; Li G; Liu Y; Zhao J; Lin L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3476-80. PubMed ID: 30198249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of ultrasound and glucose synergy effect on the optical clearing and light penetration for human colon tissue using SD-OCT.
    Zhao Q; Wei H; He Y; Ren Q; Zhou C
    J Biophotonics; 2014 Nov; 7(11-12):938-47. PubMed ID: 24458608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of low-level light imaging performance using optical clearing method.
    He Y; Wang RK
    Biosens Bioelectron; 2004 Oct; 20(3):460-7. PubMed ID: 15494226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography.
    Lima IT; Kalra A; Sherif SS
    Biomed Opt Express; 2011 Apr; 2(5):1069-81. PubMed ID: 21559120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy and noise in optical Doppler tomography studied by Monte Carlo simulation.
    Lindmo T; Smithies DJ; Chen Z; Nelson JS; Milner TE
    Phys Med Biol; 1998 Oct; 43(10):3045-64. PubMed ID: 9814534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of dye diffusion in scattering tissue phantoms using dual-wavelength low-coherence interferometry.
    Storen T; Royset A; Svaasand LO; Lindmo T
    J Biomed Opt; 2006; 11(1):014017. PubMed ID: 16526894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo modeling of optical coherence tomography imaging through turbid media.
    Lu Q; Gan X; Gu M; Luo Q
    Appl Opt; 2004 Mar; 43(8):1628-37. PubMed ID: 15046164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.