These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12164633)

  • 1. Dissolution characteristics of 226Ra from phosphogypsum.
    Haridasan PP; Maniyan CG; Pillai PM; Khan AH
    J Environ Radioact; 2002; 62(3):287-94. PubMed ID: 12164633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations on the activity concentrations of 238U, 226RA, 228RA, 210PB and 40K in Jordan phosphogypsum and fertilizers.
    Al-Jundi J; Al-Ahmad N; Shehadeh H; Afaneh F; Maghrabi M; Gerstmann U; Höllriegl V; Oeh U
    Radiat Prot Dosimetry; 2008; 131(4):449-54. PubMed ID: 18701517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leachable 226Ra in Philippine phosphogypsum and its implication in groundwater contamination in Isabel, Leyte, Philippines.
    Cañete SJ; Palad LJ; Enriquez EB; Garcia TY; Yulo-Nazarea T
    Environ Monit Assess; 2008 Jul; 142(1-3):337-44. PubMed ID: 17874311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of mesoscale meteorology in modulating the (222)Rn concentrations in Huelva (Spain)--impact of phosphogypsum piles.
    Hernández-Ceballos MA; Vargas A; Arnold D; Bolívar JP
    J Environ Radioact; 2015 Jul; 145():1-9. PubMed ID: 25855087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphogypsum amendment effect on radionuclide content in drainage water and marsh soils from southwestern Spain.
    El-Mrabet R; Abril JM; Periáñez R; Manjón G; García-Tenorio R; Delgado A; Andreu L
    J Environ Qual; 2003; 32(4):1262-8. PubMed ID: 12931881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco.
    Azouazi M; Ouahidi Y; Fakhi S; Andres Y; Abbe JC; Benmansour M
    J Environ Radioact; 2001; 54(2):231-42. PubMed ID: 11378917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of phosphogypsum in agriculture and the radiological impact.
    Papastefanou C; Stoulos S; Ioannidou A; Manolopoulou M
    J Environ Radioact; 2006; 89(2):188-98. PubMed ID: 16806608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radon emanation coefficients for phosphogypsum.
    Rutherford PM; Dudas MJ; Arocena JM
    Health Phys; 1995 Oct; 69(4):513-20. PubMed ID: 7558842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.
    Santos AJ; Mazzilli BP; Fávaro DI; Silva PS
    J Environ Radioact; 2006; 87(1):52-61. PubMed ID: 16375997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphogypsum recycling in the building materials industry: assessment of the radon exhalation rate.
    Campos MP; Costa LJP; Nisti MB; Mazzilli BP
    J Environ Radioact; 2017 Jun; 172():232-236. PubMed ID: 28395156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiological impacts of phosphogypsum.
    Al Attar L; Al-Oudat M; Kanakri S; Budeir Y; Khalily H; Al Hamwi A
    J Environ Manage; 2011 Sep; 92(9):2151-8. PubMed ID: 21530064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of natural radioactivity in phosphate ore, phosphogypsum and soil samples around a phosphate fertilizer plant in Nigeria.
    Okeji MC; Agwu KK; Idigo FU
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1078-81. PubMed ID: 22965334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of natural radionuclides mobility in a phosphogypsum disposal area.
    Pérez-Moreno SM; Gázquez MJ; Pérez-López R; Vioque I; Bolívar JP
    Chemosphere; 2018 Nov; 211():775-783. PubMed ID: 30099162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying radon exhalation rates variability from phosphogypsum piles in the SW of Spain.
    López-Coto I; Mas JL; Vargas A; Bolívar JP
    J Hazard Mater; 2014 Sep; 280():464-71. PubMed ID: 25194815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and theoretical studies on physico-chemical parameters affecting the solubility of phosphogypsum.
    Papanicolaou F; Antoniou S; Pashalidis I
    J Environ Radioact; 2009 Oct; 100(10):854-7. PubMed ID: 19596498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation and anion leaching and growth of Acacia saligna in bauxite residue sand amended with residue mud, poultry manure and phosphogypsum.
    Jones BE; Haynes RJ; Phillips IR
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):835-46. PubMed ID: 21987225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A radiological evaluation of phosphogypsum.
    Laiche TP; Scott LM
    Health Phys; 1991 May; 60(5):691-3. PubMed ID: 1850391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon exhalation from phosphogypsum building boards: symmetry constraints, impermeable boundary conditions and numerical simulation of a test case.
    Rabi JA; da Silva NC
    J Environ Radioact; 2006; 86(2):164-75. PubMed ID: 16213634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.
    Ammar R; Kanbar HJ; Kazpard V; Wazne M; El Samrani AG; Amacha N; Saad Z; Chou L
    J Environ Manage; 2016 Aug; 178():20-29. PubMed ID: 27131954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural radionuclides in the aquatic environment of a phosphogypsum disposal area.
    Haridasan PP; Paul AC; Desai MV
    J Environ Radioact; 2001; 53(2):155-65. PubMed ID: 11378936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.