These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12164642)

  • 61. Reclamation and agricultural reuse of wastewater: the experience of the Cagliari sewage treatment plant (Sardinia, Italy).
    Botti P; Virdis A; Solinas G; Buscarinu P; Ferralis M; Marras G; Spanu P; Vacca S
    Water Sci Technol; 2009; 59(1):65-72. PubMed ID: 19151487
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Direct energy recovery from primary and secondary sludges by supercritical water oxidation.
    Svanström M; Modell M; Tester J
    Water Sci Technol; 2004; 49(10):201-8. PubMed ID: 15259956
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment.
    Breach PA; Simonovic SP
    Environ Manage; 2018 Apr; 61(4):624-636. PubMed ID: 29423714
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sustainable energy, economic growth and public health.
    Haines A
    Med Confl Surviv; 2001; 17(1):56-62. PubMed ID: 11339344
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Water and energy recovery: The future of wastewater in China.
    Smith K; Liu S; Hu HY; Dong X; Wen X
    Sci Total Environ; 2018 Oct; 637-638():1466-1470. PubMed ID: 29801239
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.
    Sweetapple C; Fu G; Butler D
    Water Res; 2014 May; 55():52-62. PubMed ID: 24602860
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stimulating investment in energy materials and technologies to combat climate change: an overview of learning curve analysis and niche market support.
    Foxon TJ
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3469-83. PubMed ID: 20566519
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development.
    Wagner L; Ross I; Foster J; Hankamer B
    PLoS One; 2016; 11(3):e0149406. PubMed ID: 26959977
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Diurnal variations of the energy intensity and associated greenhouse gas emissions for activated sludge processes.
    Emami N; Sobhani R; Rosso D
    Water Sci Technol; 2018 Apr; 77(7-8):1838-1850. PubMed ID: 29676741
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Autonomous technologies research at BSRIA.
    Smerdon T
    Health Estate J; 1996 Nov; 50(9):2-4. PubMed ID: 10162734
    [No Abstract]   [Full Text] [Related]  

  • 71. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.
    Stokes JR; Hendrickson TP; Horvath A
    Environ Sci Technol; 2014 Dec; 48(23):13583-91. PubMed ID: 25369123
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of heating technologies on CO(2) and energy efficiency of Dutch greenhouse firms.
    Oude Lansink A; Bezlepkin I
    J Environ Manage; 2003 May; 68(1):73-82. PubMed ID: 12767863
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The energy-water-food nexus: strategic analysis of technologies for transforming the urban metabolism.
    Villarroel Walker R; Beck MB; Hall JW; Dawson RJ; Heidrich O
    J Environ Manage; 2014 Aug; 141():104-15. PubMed ID: 24768840
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regionalized LCA-based optimization of building energy supply: method and case study for a Swiss municipality.
    Saner D; Vadenbo C; Steubing B; Hellweg S
    Environ Sci Technol; 2014 Jul; 48(13):7651-9. PubMed ID: 24865977
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cost-effective choices of marine fuels in a carbon-constrained world: results from a global energy model.
    Taljegard M; Brynolf S; Grahn M; Andersson K; Johnson H
    Environ Sci Technol; 2014 Nov; 48(21):12986-93. PubMed ID: 25286282
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combining LCT tools for the optimization of an industrial process: material and energy flow analysis and best available techniques.
    Rodríguez MT; Andrade LC; Bugallo PM; Long JJ
    J Hazard Mater; 2011 Sep; 192(3):1705-19. PubMed ID: 21802848
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.
    Tseng SC; Hung SW
    J Environ Manage; 2014 Jan; 133():315-22. PubMed ID: 24412595
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.
    Bronchart F; De Paepe M; Dewulf J; Schrevens E; Demeyer P
    J Environ Manage; 2013 Apr; 119():121-33. PubMed ID: 23474336
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions.
    Cai W; Wan L; Jiang Y; Wang C; Lin L
    Environ Sci Technol; 2015 Dec; 49(24):13921-8. PubMed ID: 26561867
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The ways that people talk about natural resources: discursive strategies as barriers to environmentally sustainable practices.
    Kurz T; Donaghue N; Rapley M; Walker I
    Br J Soc Psychol; 2005 Dec; 44(Pt 4):603-20. PubMed ID: 16368022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.