These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12165410)

  • 1. The spinal antinociceptive effect of kyotorphin in mice: involvement of the descending noradrenergic and serotonergic systems.
    Ochi T; Ohkubo Y; Mutoh S
    Neurosci Lett; 2002 Aug; 329(2):193-6. PubMed ID: 12165410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central antinociceptive effects of mitragynine in mice: contribution of descending noradrenergic and serotonergic systems.
    Matsumoto K; Mizowaki M; Suchitra T; Murakami Y; Takayama H; Sakai S; Aimi N; Watanabe H
    Eur J Pharmacol; 1996 Dec; 317(1):75-81. PubMed ID: 8982722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spinal antinociceptive effect of FR140423 in mice involvement of the descending noradrenergic and serotonergic systems.
    Ochi T; Goto T
    Life Sci; 2001 Sep; 69(19):2257-64. PubMed ID: 11669468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of antinociception induced by supraspinally administered L-arginine and kyotorphin.
    Kawabata A; Manabe S; Takagi H
    Br J Pharmacol; 1994 Jul; 112(3):817-22. PubMed ID: 7921607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of the antinociceptive effect of spinally administered kyotorphin by naltrindole in mice.
    Ochi T; Ohkubo Y; Mutoh S
    Neurosci Lett; 2002 Apr; 322(2):95-8. PubMed ID: 11958852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FR143166 attenuates spinal pain transmission through activation of the serotonergic system.
    Ochi T; Ohkubo Y; Mutoh S
    Eur J Pharmacol; 2002 Oct; 452(3):319-24. PubMed ID: 12359273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synthetic TRH analogue taltirelin exerts modality-specific antinociceptive effects via distinct descending monoaminergic systems.
    Tanabe M; Tokuda Y; Takasu K; Ono K; Honda M; Ono H
    Br J Pharmacol; 2007 Feb; 150(4):403-14. PubMed ID: 17220907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antinociceptive effect of FR140423 in mice: involvement of spinal alpha(2)-adrenoceptors.
    Ochi T; Goto T
    Eur J Pharmacol; 2000 Jul; 400(2-3):199-203. PubMed ID: 10988334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A local serotonergic component involved in the spinal antinociceptive action of morphine.
    Crisp T; Smith DJ
    Neuropharmacology; 1989 Oct; 28(10):1047-53. PubMed ID: 2554180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord.
    He L; Lee NM
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1181-6. PubMed ID: 9618421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delta-1 opioid receptor-mediated antinociceptive properties of a nonpeptidic delta opioid receptor agonist, (-)TAN-67, in the mouse spinal cord.
    Tseng LF; Narita M; Mizoguchi H; Kawai K; Mizusuna A; Kamei J; Suzuki T; Nagase H
    J Pharmacol Exp Ther; 1997 Feb; 280(2):600-5. PubMed ID: 9023269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of Descending Serotonergic and Noradrenergic Systems and their Spinal Receptor Subtypes in the Antinociceptive Effect of Dipyrone.
    Gencer A; Gunduz O; Ulugol A
    Drug Res (Stuttg); 2015 Dec; 65(12):645-9. PubMed ID: 25647230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central and systemic morphine-induced antinociception in mice: contribution of descending serotonergic and noradrenergic pathways.
    Wigdor S; Wilcox GL
    J Pharmacol Exp Ther; 1987 Jul; 242(1):90-5. PubMed ID: 3612540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal 5-HT7 receptors play an important role in the antinociceptive and antihyperalgesic effects of tramadol and its metabolite, O-Desmethyltramadol, via activation of descending serotonergic pathways.
    Yanarates O; Dogrul A; Yildirim V; Sahin A; Sizlan A; Seyrek M; Akgül O; Kozak O; Kurt E; Aypar U
    Anesthesiology; 2010 Mar; 112(3):696-710. PubMed ID: 20179508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociception produced by receptor selective opioids: modulation of spinal antinociceptive effects by supraspinal opioids.
    Miaskowski C; Levine JD
    Brain Res; 1992 Nov; 595(1):32-8. PubMed ID: 1334770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spinal antinociceptive effect of FR140423 is mediated through kyotorphin receptors.
    Ochi T; Motoyama Y; Goto T
    Life Sci; 2000; 66(23):2239-45. PubMed ID: 10855944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antinociceptive effect induced by FR140423 is mediated through spinal 5-HT2A and 5-HT3 receptors.
    Ochi T; Goto T
    Eur J Pharmacol; 2000 Dec; 409(2):167-72. PubMed ID: 11104830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. L-arginine exerts a dual role in nociceptive processing in the brain: involvement of the kyotorphin-Met-enkephalin pathway and NO-cyclic GMP pathway.
    Kawabata A; Umeda N; Takagi H
    Br J Pharmacol; 1993 May; 109(1):73-9. PubMed ID: 8388303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The local monoaminergic dependency of spinal ketamine.
    Crisp T; Perrotti JM; Smith DL; Stafinsky JL; Smith DJ
    Eur J Pharmacol; 1991 Mar; 194(2-3):167-72. PubMed ID: 1647967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice.
    Szentirmay AK; Király KP; Lenkey N; Lackó E; Al-Khrasani M; Friedmann T; Timár J; Gyarmati S; Tóth G; Fürst S; Riba P
    Brain Res Bull; 2013 Jan; 90():66-71. PubMed ID: 22995282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.