BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 12165425)

  • 1. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots.
    Cooper TG
    FEMS Microbiol Rev; 2002 Aug; 26(3):223-38. PubMed ID: 12165425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae.
    Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2008 Apr; 283(14):8919-29. PubMed ID: 18245087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated.
    Tate JJ; Tolley EA; Cooper TG
    Genetics; 2019 Aug; 212(4):1205-1225. PubMed ID: 31213504
    [No Abstract]   [Full Text] [Related]  

  • 4. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors.
    Beck T; Hall MN
    Nature; 1999 Dec; 402(6762):689-92. PubMed ID: 10604478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.
    Feller A; Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2013 Jan; 288(3):1841-55. PubMed ID: 23184930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization.
    Tate JJ; Buford D; Rai R; Cooper TG
    Genetics; 2017 Feb; 205(2):633-655. PubMed ID: 28007891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain.
    Tate JJ; Feller A; Dubois E; Cooper TG
    J Biol Chem; 2006 Dec; 281(49):37980-92. PubMed ID: 17015442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes.
    Georis I; Feller A; Tate JJ; Cooper TG; Dubois E
    Genetics; 2009 Mar; 181(3):861-74. PubMed ID: 19104072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae.
    Tate JJ; Georis I; Dubois E; Cooper TG
    J Biol Chem; 2010 Jun; 285(23):17880-95. PubMed ID: 20378536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae.
    Cox KH; Kulkarni A; Tate JJ; Cooper TG
    J Biol Chem; 2004 Mar; 279(11):10270-8. PubMed ID: 14679193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.
    Numamoto M; Tagami S; Ueda Y; Imabeppu Y; Sasano Y; Sugiyama M; Maekawa H; Harashima S
    J Biosci Bioeng; 2015 Aug; 120(2):121-7. PubMed ID: 25641578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.
    Georis I; Tate JJ; Cooper TG; Dubois E
    J Biol Chem; 2011 Dec; 286(52):44897-912. PubMed ID: 22039046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae.
    Coffman JA; Rai R; Cooper TG
    J Bacteriol; 1995 Dec; 177(23):6910-8. PubMed ID: 7592485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in
    Tate JJ; Rai R; Cooper TG
    Genetics; 2018 Jan; 208(1):207-227. PubMed ID: 29113979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.
    van der Merwe GK; Cooper TG; van Vuuren HJ
    J Biol Chem; 2001 Aug; 276(31):28659-66. PubMed ID: 11356843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term.
    Scherens B; Feller A; Vierendeels F; Messenguy F; Dubois E
    FEMS Yeast Res; 2006 Aug; 6(5):777-91. PubMed ID: 16879428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.
    Tate JJ; Rai R; Cooper TG
    Genetics; 2015 Feb; 199(2):455-74. PubMed ID: 25527290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae.
    Xu S; Falvey DA; Brandriss MC
    Mol Cell Biol; 1995 Apr; 15(4):2321-30. PubMed ID: 7891726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formalin can alter the intracellular localization of some transcription factors in Saccharomyces cerevisiae.
    Tate JJ; Cooper TG
    FEMS Yeast Res; 2008 Dec; 8(8):1223-35. PubMed ID: 19054131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapamycin-induced Gln3 dephosphorylation is insufficient for nuclear localization: Sit4 and PP2A phosphatases are regulated and function differently.
    Tate JJ; Georis I; Feller A; Dubois E; Cooper TG
    J Biol Chem; 2009 Jan; 284(4):2522-34. PubMed ID: 19015262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.