BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 12165485)

  • 1. Messenger RNA electroporation of human monocytes, followed by rapid in vitro differentiation, leads to highly stimulatory antigen-loaded mature dendritic cells.
    Ponsaerts P; Van den Bosch G; Cools N; Van Driessche A; Nijs G; Lenjou M; Lardon F; Van Broeckhoven C; Van Bockstaele DR; Berneman ZN; Van Tendeloo VF
    J Immunol; 2002 Aug; 169(4):1669-75. PubMed ID: 12165485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accelerated, clinical-grade protocol to generate high yields of type 1-polarizing messenger RNA-loaded dendritic cells for cancer vaccination.
    Brabants E; Heyns K; De Smet S; Devreker P; Ingels J; De Cabooter N; Debacker V; Dullaers M; VAN Meerbeeck JP; Vandekerckhove B; Vermaelen KY
    Cytotherapy; 2018 Sep; 20(9):1164-1181. PubMed ID: 30122654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroporation of immature and mature dendritic cells: implications for dendritic cell-based vaccines.
    Michiels A; Tuyaerts S; Bonehill A; Corthals J; Breckpot K; Heirman C; Van Meirvenne S; Dullaers M; Allard S; Brasseur F; van der Bruggen P; Thielemans K
    Gene Ther; 2005 May; 12(9):772-82. PubMed ID: 15750615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved protocol for generation of immuno-potent dendritic cells through direct electroporation of CD14+ monocytes.
    Milano F; van Baal JW; Rygiel AM; Bergman JJ; Van Deventer SJ; Kapsenberg ML; Peppelenbosch MP; Krishnadath KK
    J Immunol Methods; 2007 Apr; 321(1-2):94-106. PubMed ID: 17336322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients.
    Trepiakas R; Pedersen AE; Met O; Hansen MH; Berntsen A; Svane IM
    Vaccine; 2008 Jun; 26(23):2824-32. PubMed ID: 18450338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. mRNA-electroporated mature dendritic cells retain transgene expression, phenotypical properties and stimulatory capacity after cryopreservation.
    Ponsaerts P; Van Tendeloo VF; Cools N; Van Driessche A; Lardon F; Nijs G; Lenjou M; Mertens G; Van Broeckhoven C; Van Bockstaele DR; Berneman ZN
    Leukemia; 2002 Jul; 16(7):1324-30. PubMed ID: 12094257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial.
    Van Driessche A; Van de Velde AL; Nijs G; Braeckman T; Stein B; De Vries JM; Berneman ZN; Van Tendeloo VF
    Cytotherapy; 2009; 11(5):653-68. PubMed ID: 19530029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective clinical-scale production of dendritic cell vaccines by monocyte elutriation directly in medium, subsequent culture in bags and final antigen loading using peptides or RNA transfection.
    Erdmann M; Dörrie J; Schaft N; Strasser E; Hendelmeier M; Kämpgen E; Schuler G; Schuler-Thurner B
    J Immunother; 2007 Sep; 30(6):663-74. PubMed ID: 17667530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo depletion of CD4+CD25+ regulatory T cells enhances the antigen-specific primary and memory CTL response elicited by mature mRNA-electroporated dendritic cells.
    Van Meirvenne S; Dullaers M; Heirman C; Straetman L; Michiels A; Thielemans K
    Mol Ther; 2005 Nov; 12(5):922-32. PubMed ID: 16257383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of an optimized polyvalent monocyte-derived dendritic cell vaccine by transfecting defined RNAs after rather than before maturation.
    Schaft N; Dörrie J; Thumann P; Beck VE; Müller I; Schultz ES; Kämpgen E; Dieckmann D; Schuler G
    J Immunol; 2005 Mar; 174(5):3087-97. PubMed ID: 15728524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A full scale comparative study of methods for generation of functional Dendritic cells for use as cancer vaccines.
    Jarnjak-Jankovic S; Hammerstad H; Saebøe-Larssen S; Kvalheim G; Gaudernack G
    BMC Cancer; 2007 Jul; 7():119. PubMed ID: 17608923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncarinic acid C plus IFN-γ generates monocyte-derived dendritic cells and induces a potent Th1 polarization with capacity to migrate.
    Bae WK; Umeyama A; Chung IJ; Lee JJ; Takei M
    Cell Immunol; 2010; 266(1):104-10. PubMed ID: 20933226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of Influenza Matrix Protein 1 and MelanA-specific T lymphocytes in vitro using mRNA-electroporated dendritic cells.
    Tuyaerts S; Michiels A; Corthals J; Bonehill A; Heirman C; de Greef C; Noppe SM; Thielemans K
    Cancer Gene Ther; 2003 Sep; 10(9):696-706. PubMed ID: 12944989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Langerhans-type and monocyte-derived human dendritic cells have different susceptibilities to mRNA electroporation with distinct effects on maturation and activation: implications for immunogenicity in dendritic cell-based immunotherapy.
    Chung DJ; Romano E; Pronschinske KB; Shyer JA; Mennecozzi M; St Angelo ET; Young JW
    J Transl Med; 2013 Jul; 11():166. PubMed ID: 23837662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Ag-specific cytotoxic T lymphocytes by DC transfected with in vitro transcribed influenza virus matrix protein (M1) mRNA.
    Osman Y; Narita M; Ayres F; Takahashi M; Alldawi L; Tatsuo F; Toba K; Hirohashi T; Aizawa Y
    Cytotherapy; 2003; 5(2):161-8. PubMed ID: 12745578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.
    Osada T; Nagaoka K; Takahara M; Yang XY; Liu CX; Guo H; Roy Choudhury K; Hobeika A; Hartman Z; Morse MA; Lyerly HK
    J Immunother; 2015 May; 38(4):155-64. PubMed ID: 25839441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study.
    Babatz J; Röllig C; Oelschlägel U; Zhao S; Ehninger G; Schmitz M; Bornhäuser M
    J Hematother Stem Cell Res; 2003 Oct; 12(5):515-23. PubMed ID: 14594508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypical and functional characterization of clinical grade dendritic cells.
    de Vries IJ; Eggert AA; Scharenborg NM; Vissers JL; Lesterhuis WJ; Boerman OC; Punt CJ; Adema GJ; Figdor CG
    J Immunother; 2002; 25(5):429-38. PubMed ID: 12218781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of clinical grade dendritic cells with capacity to produce biologically active IL-12p70.
    Zobywalski A; Javorovic M; Frankenberger B; Pohla H; Kremmer E; Bigalke I; Schendel DJ
    J Transl Med; 2007 Apr; 5():18. PubMed ID: 17430585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyriboinosinic polyribocytidylic acid (poly(I:C)) induces stable maturation of functionally active human dendritic cells.
    Verdijk RM; Mutis T; Esendam B; Kamp J; Melief CJ; Brand A; Goulmy E
    J Immunol; 1999 Jul; 163(1):57-61. PubMed ID: 10384099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.