BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 12165556)

  • 1. Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease.
    Chan EY; Luthi-Carter R; Strand A; Solano SM; Hanson SA; DeJohn MM; Kooperberg C; Chase KO; DiFiglia M; Young AB; Leavitt BR; Cha JH; Aronin N; Hayden MR; Olson JM
    Hum Mol Genet; 2002 Aug; 11(17):1939-51. PubMed ID: 12165556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects.
    Luthi-Carter R; Strand AD; Hanson SA; Kooperberg C; Schilling G; La Spada AR; Merry DE; Young AB; Ross CA; Borchelt DR; Olson JM
    Hum Mol Genet; 2002 Aug; 11(17):1927-37. PubMed ID: 12165555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.
    Kuhn A; Goldstein DR; Hodges A; Strand AD; Sengstag T; Kooperberg C; Becanovic K; Pouladi MA; Sathasivam K; Cha JH; Hannan AJ; Hayden MR; Leavitt BR; Dunnett SB; Ferrante RJ; Albin R; Shelbourne P; Delorenzi M; Augood SJ; Faull RL; Olson JM; Bates GP; Jones L; Luthi-Carter R
    Hum Mol Genet; 2007 Aug; 16(15):1845-61. PubMed ID: 17519223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice.
    Bradford J; Shin JY; Roberts M; Wang CE; Sheng G; Li S; Li XJ
    J Biol Chem; 2010 Apr; 285(14):10653-61. PubMed ID: 20145253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain.
    Luthi-Carter R; Hanson SA; Strand AD; Bergstrom DA; Chun W; Peters NL; Woods AM; Chan EY; Kooperberg C; Krainc D; Young AB; Tapscott SJ; Olson JM
    Hum Mol Genet; 2002 Aug; 11(17):1911-26. PubMed ID: 12165554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic mice expressing caspase-6-derived N-terminal fragments of mutant huntingtin develop neurologic abnormalities with predominant cytoplasmic inclusion pathology composed largely of a smaller proteolytic derivative.
    Tebbenkamp AT; Green C; Xu G; Denovan-Wright EM; Rising AC; Fromholt SE; Brown HH; Swing D; Mandel RJ; Tessarollo L; Borchelt DR
    Hum Mol Genet; 2011 Jul; 20(14):2770-82. PubMed ID: 21515588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental mutagenesis of huntingtin to map cleavage sites: different outcomes in cell and mouse models.
    Tebbenkamp AT; Xu G; Siemienski ZB; Janus C; Fromholt SE; Brown HH; Swing D; Tessarollo L; Borchelt DR
    J Huntingtons Dis; 2014; 3(1):73-86. PubMed ID: 25062766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential D1 and D2 receptor-mediated effects on immediate early gene induction in a transgenic mouse model of Huntington's disease.
    Spektor BS; Miller DW; Hollingsworth ZR; Kaneko YA; Solano SM; Johnson JM; Penney JB; Young AB; Luthi-Carter R
    Brain Res Mol Brain Res; 2002 Jun; 102(1-2):118-28. PubMed ID: 12191502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length of normal Huntingtin's polyglutamine stretch on CAG140 mouse model pathogenesis.
    Zheng S; Ghitani N; Blackburn JS; Liu JP; Zeitlin SO
    Mol Brain; 2012 Aug; 5():28. PubMed ID: 22892315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear-targeting of mutant huntingtin fragments produces Huntington's disease-like phenotypes in transgenic mice.
    Schilling G; Savonenko AV; Klevytska A; Morton JL; Tucker SM; Poirier M; Gale A; Chan N; Gonzales V; Slunt HH; Coonfield ML; Jenkins NA; Copeland NG; Ross CA; Borchelt DR
    Hum Mol Genet; 2004 Aug; 13(15):1599-610. PubMed ID: 15190011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysregulation of gene expression in primary neuron models of Huntington's disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry.
    Runne H; Régulier E; Kuhn A; Zala D; Gokce O; Perrin V; Sick B; Aebischer P; Déglon N; Luthi-Carter R
    J Neurosci; 2008 Sep; 28(39):9723-31. PubMed ID: 18815258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin.
    Tanaka Y; Igarashi S; Nakamura M; Gafni J; Torcassi C; Schilling G; Crippen D; Wood JD; Sawa A; Jenkins NA; Copeland NG; Borchelt DR; Ross CA; Ellerby LM
    Neurobiol Dis; 2006 Feb; 21(2):381-91. PubMed ID: 16150600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin.
    Jin J; Cheng Y; Zhang Y; Wood W; Peng Q; Hutchison E; Mattson MP; Becker KG; Duan W
    J Neurochem; 2012 Nov; 123(4):477-90. PubMed ID: 22906125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced expression of the TrkB receptor in Huntington's disease mouse models and in human brain.
    Ginés S; Bosch M; Marco S; Gavaldà N; Díaz-Hernández M; Lucas JJ; Canals JM; Alberch J
    Eur J Neurosci; 2006 Feb; 23(3):649-58. PubMed ID: 16487146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease.
    Stanek LM; Yang W; Angus S; Sardi PS; Hayden MR; Hung GH; Bennett CF; Cheng SH; Shihabuddin LS
    J Huntingtons Dis; 2013; 2(2):217-28. PubMed ID: 25063516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease.
    Yu ZX; Li SH; Evans J; Pillarisetti A; Li H; Li XJ
    J Neurosci; 2003 Mar; 23(6):2193-202. PubMed ID: 12657678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington's disease transgenic mice prior to the onset of motor symptoms.
    Hebb AL; Robertson HA; Denovan-Wright EM
    Neuroscience; 2004; 123(4):967-81. PubMed ID: 14751289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase cleavage of mutant huntingtin precedes neurodegeneration in Huntington's disease.
    Wellington CL; Ellerby LM; Gutekunst CA; Rogers D; Warby S; Graham RK; Loubser O; van Raamsdonk J; Singaraja R; Yang YZ; Gafni J; Bredesen D; Hersch SM; Leavitt BR; Roy S; Nicholson DW; Hayden MR
    J Neurosci; 2002 Sep; 22(18):7862-72. PubMed ID: 12223539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice.
    Wang CE; Li S; Li XJ
    Mol Brain; 2010 Nov; 3():33. PubMed ID: 21044321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.