These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12165673)

  • 41. The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish.
    Yu YM; Cristofanilli M; Valiveti A; Ma L; Yoo M; Morellini F; Schachner M
    Neuroscience; 2011 Jun; 183():238-50. PubMed ID: 21443931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation.
    Popovich PG; Guan Z; McGaughy V; Fisher L; Hickey WF; Basso DM
    J Neuropathol Exp Neurol; 2002 Jul; 61(7):623-33. PubMed ID: 12125741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spinal cord transection in adult rats: effects of local infusion of nerve growth factor on the corticospinal tract axons.
    Fernandez E; Pallini R; Lauretti L; Mercanti D; Serra A; Calissano P
    Neurosurgery; 1993 Nov; 33(5):889-93. PubMed ID: 7505409
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chondroitinase ABC promotes axonal regeneration of Clarke's neurons after spinal cord injury.
    Yick LW; Wu W; So KF; Yip HK; Shum DK
    Neuroreport; 2000 Apr; 11(5):1063-7. PubMed ID: 10790883
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soluble cell adhesion molecule L1-Fc promotes locomotor recovery in rats after spinal cord injury.
    Roonprapunt C; Huang W; Grill R; Friedlander D; Grumet M; Chen S; Schachner M; Young W
    J Neurotrauma; 2003 Sep; 20(9):871-82. PubMed ID: 14577865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acrolein inflicts axonal membrane disruption and conduction loss in isolated guinea-pig spinal cord.
    Shi R; Luo J; Peasley M
    Neuroscience; 2002; 115(2):337-40. PubMed ID: 12421600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pharmacologically inhibiting kinesin-5 activity with monastrol promotes axonal regeneration following spinal cord injury.
    Xu C; Klaw MC; Lemay MA; Baas PW; Tom VJ
    Exp Neurol; 2015 Jan; 263():172-6. PubMed ID: 25447935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ameliorative Effects of p75NTR-ED-Fc on Axonal Regeneration and Functional Recovery in Spinal Cord-Injured Rats.
    Wang YT; Lu XM; Zhu F; Huang P; Yu Y; Long ZY; Wu YM
    Mol Neurobiol; 2015 Dec; 52(3):1821-1834. PubMed ID: 25394381
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia.
    LoPachin RM; Gaughan CL; Lehning EJ; Kaneko Y; Kelly TM; Blight A
    J Neurophysiol; 1999 Nov; 82(5):2143-53. PubMed ID: 10561394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.
    Okada SL; Stivers NS; Stys PK; Stirling DP
    J Vis Exp; 2014 Nov; (93):e52173. PubMed ID: 25490396
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord.
    Kerschensteiner M; Schwab ME; Lichtman JW; Misgeld T
    Nat Med; 2005 May; 11(5):572-7. PubMed ID: 15821747
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complement protein C1q modulates neurite outgrowth in vitro and spinal cord axon regeneration in vivo.
    Peterson SL; Nguyen HX; Mendez OA; Anderson AJ
    J Neurosci; 2015 Mar; 35(10):4332-49. PubMed ID: 25762679
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury.
    Imani S; Zagari Z; Rezaei Zarchi S; Jorjani M; Nasri S
    Artif Cells Nanomed Biotechnol; 2016; 44(1):144-9. PubMed ID: 25861814
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury.
    Maxwell WL; McCreath BJ; Graham DI; Gennarelli TA
    J Neurocytol; 1995 Dec; 24(12):925-42. PubMed ID: 8719820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recombinant human TNFalpha induces concentration-dependent and reversible alterations in the electrophysiological properties of axons in mammalian spinal cord.
    Davies AL; Hayes KC; Shi R
    J Neurotrauma; 2006 Aug; 23(8):1261-73. PubMed ID: 16928184
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of N-acetyl-cysteine and acetyl-L-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury.
    Karalija A; Novikova LN; Kingham PJ; Wiberg M; Novikov LN
    Neuroscience; 2014 Jun; 269():143-51. PubMed ID: 24680856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue.
    Luo J; Shi R
    Neurochem Int; 2004 Jun; 44(7):475-86. PubMed ID: 15209416
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.