BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 12165683)

  • 1. Ultrasound recorded axillary artery blood flow during elbow-flexion exercise.
    Amundsen BH; Wisløff U; Helgerud J; Hoff J; Slørdahl SA
    Med Sci Sports Exerc; 2002 Aug; 34(8):1288-93. PubMed ID: 12165683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femoral and axillary ultrasound blood flow during exercise: a methodological study.
    Walther G; Nottin S; Dauzat M; Obert P
    Med Sci Sports Exerc; 2006 Jul; 38(7):1353-61. PubMed ID: 16826035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler ultrasound evaluation of the structural and hemodynamic changes in the brachial artery following two different exercise protocols.
    Ozcan H; Oztekin PS; Zergeroğlu AM; Ersöz G; Fiçicilar H; Ustüner E
    Diagn Interv Radiol; 2006 Jun; 12(2):80-4. PubMed ID: 16752354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forearm blood flow by Doppler ultrasound during test and exercise: tests of day-to-day repeatability.
    Shoemaker JK; Pozeg ZI; Hughson RL
    Med Sci Sports Exerc; 1996 Sep; 28(9):1144-9. PubMed ID: 8883002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans.
    Shoemaker JK; Naylor HL; Pozeg ZI; Hughson RL
    J Appl Physiol (1985); 1996 Oct; 81(4):1516-21. PubMed ID: 8904562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vasoconstriction in active calf persists after discontinuation of combined exercise with high-intensity elbow flexion.
    Kagaya A; Ogita F; Koyama A
    Acta Physiol Scand; 1996 May; 157(1):85-92. PubMed ID: 8735658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.
    Gonzales JU; Thompson BC; Thistlethwaite JR; Harper AJ; Scheuermann BW
    J Appl Physiol (1985); 2007 Dec; 103(6):1950-7. PubMed ID: 17932302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle fatigue in response to low-load blood flow-restricted elbow-flexion exercise: are there any sex differences?
    Mendonca GV; Borges A; Teodósio C; Matos P; Correia J; Vila-Chã C; Mil-Homens P; Pezarat-Correia P
    Eur J Appl Physiol; 2018 Oct; 118(10):2089-2096. PubMed ID: 30006670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full Range of Motion Induces Greater Muscle Damage Than Partial Range of Motion in Elbow Flexion Exercise With Free Weights.
    Baroni BM; Pompermayer MG; Cini A; Peruzzolo AS; Radaelli R; Brusco CM; Pinto RS
    J Strength Cond Res; 2017 Aug; 31(8):2223-2230. PubMed ID: 27398917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Blood flow regulation and oxygen uptake during high-intensity forearm exercise.
    Nyberg SK; Berg OK; Helgerud J; Wang E
    J Appl Physiol (1985); 2017 Apr; 122(4):907-917. PubMed ID: 28057820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brachial artery modifications to blood flow-restricted handgrip training and detraining.
    Hunt JE; Walton LA; Ferguson RA
    J Appl Physiol (1985); 2012 Mar; 112(6):956-61. PubMed ID: 22174400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal inhomogeneity in brachial artery blood flow during forearm exercise.
    Robergs RA; Icenogle MV; Hudson TL; Greene ER
    Med Sci Sports Exerc; 1997 Aug; 29(8):1021-7. PubMed ID: 9268958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beat-by-beat forearm blood flow with Doppler ultrasound and strain-gauge plethysmography.
    Tschakovsky ME; Shoemaker JK; Hughson RL
    J Appl Physiol (1985); 1995 Sep; 79(3):713-9. PubMed ID: 8567508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of blood flow parameters measured in femoral artery after exercise: correlation with maximum oxygen uptake.
    Piquet L; Dalmay F; Ayoub J; Vandroux JC; Menier R; Antonini MT; Pourcelot L
    Ultrasound Med Biol; 2000 Jul; 26(6):1001-7. PubMed ID: 10996700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time course of improved flow-mediated dilation after short-term exercise training.
    Allen JD; Geaghan JP; Greenway F; Welsch MA
    Med Sci Sports Exerc; 2003 May; 35(5):847-53. PubMed ID: 12750596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute vascular and cardiovascular responses to blood flow-restricted exercise.
    Downs ME; Hackney KJ; Martin D; Caine TL; Cunningham D; O'Connor DP; Ploutz-Snyder LL
    Med Sci Sports Exerc; 2014 Aug; 46(8):1489-97. PubMed ID: 24389514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alveolar oxygen uptake and femoral artery blood flow dynamics in upright and supine leg exercise in humans.
    MacDonald MJ; Shoemaker JK; Tschakovsky ME; Hughson RL
    J Appl Physiol (1985); 1998 Nov; 85(5):1622-8. PubMed ID: 9804561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeatability of popliteal blood flow and lower limb vascular conductance at rest and exercise during body tilt using Doppler ultrasound.
    Villar R; Hughson RL
    Physiol Meas; 2013 Mar; 34(3):291-306. PubMed ID: 23399803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.