These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12165689)

  • 1. Pedal trajectory alters maximal single-leg cycling power.
    Martin JC; Lamb SM; Brown NA
    Med Sci Sports Exerc; 2002 Aug; 34(8):1332-6. PubMed ID: 12165689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed.
    Martin JC; Spirduso WW
    Eur J Appl Physiol; 2001 May; 84(5):413-8. PubMed ID: 11417428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics.
    Bertucci W; Grappe F; Groslambert A
    J Appl Biomech; 2007 May; 23(2):87-92. PubMed ID: 17603128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of locomotor muscle fatigue on joint-specific power production during cycling.
    Elmer SJ; Marshall CS; Wehmanen K; Amann M; McDaniel J; Martin DT; Martin JC
    Med Sci Sports Exerc; 2012 Aug; 44(8):1504-11. PubMed ID: 22343616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects on the crank torque profile when changing pedalling cadence in level ground and uphill road cycling.
    Bertucci W; Grappe F; Girard A; Betik A; Rouillon JD
    J Biomech; 2005 May; 38(5):1003-10. PubMed ID: 15797582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle fibre type, efficiency, and mechanical optima affect freely chosen pedal rate during cycling.
    Hansen EA; Andersen JL; Nielsen JS; Sjøgaard G
    Acta Physiol Scand; 2002 Nov; 176(3):185-94. PubMed ID: 12392498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pedalling rate affects endurance performance during high-intensity cycling.
    Nielsen JS; Hansen EA; Sjøgaard G
    Eur J Appl Physiol; 2004 Jun; 92(1-2):114-20. PubMed ID: 15024664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Relationship between Pedal Force and Crank Angular Velocity in Sprint Cycling.
    Bobbert MF; Casius LJ; Van Soest AJ
    Med Sci Sports Exerc; 2016 May; 48(5):869-78. PubMed ID: 26694841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle.
    Abbiss CR; Karagounis LG; Laursen PB; Peiffer JJ; Martin DT; Hawley JA; Fatehee NN; Martin JC
    J Appl Physiol (1985); 2011 May; 110(5):1248-55. PubMed ID: 21330612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in neuromuscular function and perceptual responses following acute eccentric cycling exercise.
    Elmer SJ; McDaniel J; Martin JC
    Eur J Appl Physiol; 2010 Dec; 110(6):1225-33. PubMed ID: 20737166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists.
    Elmer SJ; Amann M; McDaniel J; Martin DT; Martin JC
    Eur J Appl Physiol; 2013 Feb; 113(2):479-88. PubMed ID: 22806085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis.
    Dorel S; Couturier A; Lacour JR; Vandewalle H; Hautier C; Hug F
    Med Sci Sports Exerc; 2010 Jun; 42(6):1174-83. PubMed ID: 19997017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical efficiency of cycling with a new developed pedal-crank.
    Zamparo P; Minetti A; di Prampero P
    J Biomech; 2002 Oct; 35(10):1387-98. PubMed ID: 12231284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and kinematics analysis of incremental cycling to exhaustion.
    Bini RR; Diefenthaeler F
    Sports Biomech; 2010 Nov; 9(4):223-35. PubMed ID: 21309297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiological counterpoint to mechanistic estimates of "internal power" during cycling at different pedal rates.
    Hansen EA; Jørgensen LV; Sjøgaard G
    Eur J Appl Physiol; 2004 Apr; 91(4):435-42. PubMed ID: 14639482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.
    Szecsi J; Straube A; Fornusek C
    Med Eng Phys; 2014 Nov; 36(11):1421-7. PubMed ID: 24924382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional roles of the leg muscles when pedaling in the recumbent versus the upright position.
    Hakansson NA; Hull ML
    J Biomech Eng; 2005 Apr; 127(2):301-10. PubMed ID: 15971708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in multi-joint leg function following chronic eccentric exercise.
    Elmer S; Hahn S; McAllister P; Leong C; Martin J
    Scand J Med Sci Sports; 2012 Oct; 22(5):653-61. PubMed ID: 21410545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.