These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 12165866)
1. BRCA2 and Smad3 synergize in regulation of gene transcription. Preobrazhenska O; Yakymovych M; Kanamoto T; Yakymovych I; Stoika R; Heldin CH; Souchelnytskyi S Oncogene; 2002 Aug; 21(36):5660-4. PubMed ID: 12165866 [TBL] [Abstract][Full Text] [Related]
2. Tumor-derived C-terminal mutations of Smad4 with decreased DNA binding activity and enhanced intramolecular interaction. Kuang C; Chen Y Oncogene; 2004 Feb; 23(5):1021-9. PubMed ID: 14647410 [TBL] [Abstract][Full Text] [Related]
3. Roles for lysine residues of the MH2 domain of Smad3 in transforming growth factor-beta signaling. Imoto S; Sugiyama K; Sekine Y; Matsuda T FEBS Lett; 2005 May; 579(13):2853-62. PubMed ID: 15907489 [TBL] [Abstract][Full Text] [Related]
4. TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. Dubrovska A; Kanamoto T; Lomnytska M; Heldin CH; Volodko N; Souchelnytskyi S Oncogene; 2005 Mar; 24(14):2289-97. PubMed ID: 15735739 [TBL] [Abstract][Full Text] [Related]
5. Cited2 modulates TGF-beta-mediated upregulation of MMP9. Chou YT; Wang H; Chen Y; Danielpour D; Yang YC Oncogene; 2006 Sep; 25(40):5547-60. PubMed ID: 16619037 [TBL] [Abstract][Full Text] [Related]
6. Cyclic adenosine 3',5'-monophosphate-elevating agents inhibit transforming growth factor-beta-induced SMAD3/4-dependent transcription via a protein kinase A-dependent mechanism. Schiller M; Verrecchia F; Mauviel A Oncogene; 2003 Dec; 22(55):8881-90. PubMed ID: 14654784 [TBL] [Abstract][Full Text] [Related]
7. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer. Buck A; Buchholz M; Wagner M; Adler G; Gress T; Ellenrieder V Mol Cancer Res; 2006 Nov; 4(11):861-72. PubMed ID: 17114344 [TBL] [Abstract][Full Text] [Related]
8. Proteomics-based identification of proteins interacting with Smad3: SREBP-2 forms a complex with Smad3 and inhibits its transcriptional activity. Grimsby S; Jaensson H; Dubrovska A; Lomnytska M; Hellman U; Souchelnytskyi S FEBS Lett; 2004 Nov; 577(1-2):93-100. PubMed ID: 15527767 [TBL] [Abstract][Full Text] [Related]
9. Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF-beta/Smad3-mediated transcriptional activation. Cheng PL; Chang MH; Chao CH; Lee YH Oncogene; 2004 Oct; 23(47):7821-38. PubMed ID: 15334054 [TBL] [Abstract][Full Text] [Related]
10. Notch4 intracellular domain binding to Smad3 and inhibition of the TGF-beta signaling. Sun Y; Lowther W; Kato K; Bianco C; Kenney N; Strizzi L; Raafat D; Hirota M; Khan NI; Bargo S; Jones B; Salomon D; Callahan R Oncogene; 2005 Aug; 24(34):5365-74. PubMed ID: 16007227 [TBL] [Abstract][Full Text] [Related]
11. Smad3 is involved in the intracellular signaling pathways that mediate the inhibitory effects of transforming growth factor-beta on StAR expression. Brand C; Souchelnytskiy S; Chambaz EM; Feige JJ; Bailly S Biochem Biophys Res Commun; 1998 Dec; 253(3):780-5. PubMed ID: 9918804 [TBL] [Abstract][Full Text] [Related]
12. TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Fink SP; Mikkola D; Willson JK; Markowitz S Oncogene; 2003 Mar; 22(9):1317-23. PubMed ID: 12618756 [TBL] [Abstract][Full Text] [Related]
13. Cross-talk between the TGFbeta and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. Warner DR; Greene RM; Pisano MM FEBS Lett; 2005 Jul; 579(17):3539-46. PubMed ID: 15955531 [TBL] [Abstract][Full Text] [Related]
14. Cross-talk between the Notch and TGF-beta signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. Blokzijl A; Dahlqvist C; Reissmann E; Falk A; Moliner A; Lendahl U; Ibáñez CF J Cell Biol; 2003 Nov; 163(4):723-8. PubMed ID: 14638857 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional regulation of Smad2 is required for enhancement of TGFbeta/Smad signaling by TGFbeta inducible early gene. Johnsen SA; Subramaniam M; Katagiri T; Janknecht R; Spelsberg TC J Cell Biochem; 2002; 87(2):233-41. PubMed ID: 12244575 [TBL] [Abstract][Full Text] [Related]
16. Distortion of autocrine transforming growth factor beta signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells. Sugano Y; Matsuzaki K; Tahashi Y; Furukawa F; Mori S; Yamagata H; Yoshida K; Matsushita M; Nishizawa M; Fujisawa J; Inoue K Oncogene; 2003 Apr; 22(15):2309-21. PubMed ID: 12700666 [TBL] [Abstract][Full Text] [Related]
17. Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-beta-mediated induction of endothelin-1 expression. Rodríguez-Pascual F; Redondo-Horcajo M; Lamas S Circ Res; 2003 Jun; 92(12):1288-95. PubMed ID: 12764024 [TBL] [Abstract][Full Text] [Related]
18. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Cui Q; Lim SK; Zhao B; Hoffmann FM Oncogene; 2005 Jun; 24(24):3864-74. PubMed ID: 15750622 [TBL] [Abstract][Full Text] [Related]
19. Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Mori Y; Chen SJ; Varga J Arthritis Rheum; 2003 Jul; 48(7):1964-78. PubMed ID: 12847691 [TBL] [Abstract][Full Text] [Related]