These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 12167159)
1. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Kobayashi M; Itoh K; Suzuki T; Osanai H; Nishikawa K; Katoh Y; Takagi Y; Yamamoto M Genes Cells; 2002 Aug; 7(8):807-20. PubMed ID: 12167159 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Katoh Y; Iida K; Kang MI; Kobayashi A; Mizukami M; Tong KI; McMahon M; Hayes JD; Itoh K; Yamamoto M Arch Biochem Biophys; 2005 Jan; 433(2):342-50. PubMed ID: 15581590 [TBL] [Abstract][Full Text] [Related]
3. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish. Li L; Kobayashi M; Kaneko H; Nakajima-Takagi Y; Nakayama Y; Yamamoto M J Biol Chem; 2008 Feb; 283(6):3248-3255. PubMed ID: 18057000 [TBL] [Abstract][Full Text] [Related]
4. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD J Biol Chem; 2004 Jul; 279(30):31556-67. PubMed ID: 15143058 [TBL] [Abstract][Full Text] [Related]
5. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Kang MI; Kobayashi A; Wakabayashi N; Kim SG; Yamamoto M Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2046-51. PubMed ID: 14764898 [TBL] [Abstract][Full Text] [Related]
6. Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Kobayashi A; Ohta T; Yamamoto M Methods Enzymol; 2004; 378():273-86. PubMed ID: 15038975 [No Abstract] [Full Text] [Related]
7. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Zhang DD; Hannink M Mol Cell Biol; 2003 Nov; 23(22):8137-51. PubMed ID: 14585973 [TBL] [Abstract][Full Text] [Related]
8. Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Kobayashi M; Yamamoto M Antioxid Redox Signal; 2005; 7(3-4):385-94. PubMed ID: 15706085 [TBL] [Abstract][Full Text] [Related]
9. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. Zipper LM; Mulcahy RT J Biol Chem; 2002 Sep; 277(39):36544-52. PubMed ID: 12145307 [TBL] [Abstract][Full Text] [Related]
10. Nrf2-Keap1 defines a physiologically important stress response mechanism. Motohashi H; Yamamoto M Trends Mol Med; 2004 Nov; 10(11):549-57. PubMed ID: 15519281 [TBL] [Abstract][Full Text] [Related]
11. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Wakabayashi N; Dinkova-Kostova AT; Holtzclaw WD; Kang MI; Kobayashi A; Yamamoto M; Kensler TW; Talalay P Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2040-5. PubMed ID: 14764894 [TBL] [Abstract][Full Text] [Related]
12. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Wakabayashi N; Itoh K; Wakabayashi J; Motohashi H; Noda S; Takahashi S; Imakado S; Kotsuji T; Otsuka F; Roop DR; Harada T; Engel JD; Yamamoto M Nat Genet; 2003 Nov; 35(3):238-45. PubMed ID: 14517554 [TBL] [Abstract][Full Text] [Related]
13. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Dinkova-Kostova AT; Holtzclaw WD; Cole RN; Itoh K; Wakabayashi N; Katoh Y; Yamamoto M; Talalay P Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11908-13. PubMed ID: 12193649 [TBL] [Abstract][Full Text] [Related]
14. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Itoh K; Wakabayashi N; Katoh Y; Ishii T; Igarashi K; Engel JD; Yamamoto M Genes Dev; 1999 Jan; 13(1):76-86. PubMed ID: 9887101 [TBL] [Abstract][Full Text] [Related]
15. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Motohashi H; Katsuoka F; Engel JD; Yamamoto M Proc Natl Acad Sci U S A; 2004 Apr; 101(17):6379-84. PubMed ID: 15087497 [TBL] [Abstract][Full Text] [Related]
16. Identification of compounds that inhibit the binding of Keap1a/Keap1b Kelch DGR domain with Nrf2 ETGE/DLG motifs in zebrafish. Raghunath A; Nagarajan R; Sundarraj K; Palanisamy K; Perumal E Basic Clin Pharmacol Toxicol; 2019 Sep; 125(3):259-270. PubMed ID: 30861618 [TBL] [Abstract][Full Text] [Related]
17. Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. Kwak MK; Wakabayashi N; Itoh K; Motohashi H; Yamamoto M; Kensler TW J Biol Chem; 2003 Mar; 278(10):8135-45. PubMed ID: 12506115 [TBL] [Abstract][Full Text] [Related]
18. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Tong KI; Katoh Y; Kusunoki H; Itoh K; Tanaka T; Yamamoto M Mol Cell Biol; 2006 Apr; 26(8):2887-900. PubMed ID: 16581765 [TBL] [Abstract][Full Text] [Related]
19. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Itoh K; Mimura J; Yamamoto M Antioxid Redox Signal; 2010 Dec; 13(11):1665-78. PubMed ID: 20446768 [TBL] [Abstract][Full Text] [Related]
20. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Tong KI; Padmanabhan B; Kobayashi A; Shang C; Hirotsu Y; Yokoyama S; Yamamoto M Mol Cell Biol; 2007 Nov; 27(21):7511-21. PubMed ID: 17785452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]