These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12167198)

  • 1. Accuracy and precision of two in-shoe pressure measurement systems.
    Hsiao H; Guan J; Weatherly M
    Ergonomics; 2002 Jun; 45(8):537-55. PubMed ID: 12167198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of pedar and F-Scan revisited.
    Quesada P; Rash G; Jarboe N
    Clin Biomech (Bristol); 1997 Apr; 12(3):S15. PubMed ID: 11415717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy and repeatability of the Pedar Mobile system in long-term vertical force measurements.
    Hurkmans HL; Bussmann JB; Benda E; Verhaar JA; Stam HJ
    Gait Posture; 2006 Jan; 23(1):118-25. PubMed ID: 16260142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-shoe center of pressure: indirect force plate vs. direct insole measurement.
    Debbi EM; Wolf A; Goryachev Y; Yizhar Z; Luger E; Debi R; Haim A
    Foot (Edinb); 2012 Dec; 22(4):269-75. PubMed ID: 22938890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A one year aging process of a soccer shoe does not increase plantar loading of the foot during soccer specific movements].
    Eils E; Streyl M
    Sportverletz Sportschaden; 2005 Sep; 19(3):140-5. PubMed ID: 16167267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Custom therapeutic insoles based on both foot shape and plantar pressure measurement provide enhanced pressure relief.
    Owings TM; Woerner JL; Frampton JD; Cavanagh PR; Botek G
    Diabetes Care; 2008 May; 31(5):839-44. PubMed ID: 18252899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Pedar in-shoe system: repeatability and normal pressure values.
    Putti AB; Arnold GP; Cochrane L; Abboud RJ
    Gait Posture; 2007 Mar; 25(3):401-5. PubMed ID: 16828288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of the Pedar Mobile system for vertical force measurement during a seven-hour period.
    Hurkmans HL; Bussmann JB; Selles RW; Horemans HL; Benda E; Stam HJ; Verhaar JA
    J Biomech; 2006; 39(1):110-8. PubMed ID: 16271594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two insole materials using subjective parameters and pedobarography (pedar-system).
    Pawelka S; Kopf A; Zwick E; Bhm T; Kranzl A
    Clin Biomech (Bristol); 1997 Apr; 12(3):S6-S7. PubMed ID: 11415703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity and repeatability of three in-shoe pressure measurement systems.
    Price C; Parker D; Nester C
    Gait Posture; 2016 May; 46():69-74. PubMed ID: 27131180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-shoe pressure distribution in "unstable" (MBT) shoes and flat-bottomed training shoes: a comparative study.
    Stewart L; Gibson JN; Thomson CE
    Gait Posture; 2007 Apr; 25(4):648-51. PubMed ID: 16901702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility test on a children's insole for measuring the dynamic plantar pressure distribution.
    Hayes A; Seitz P
    Clin Biomech (Bristol); 1997 Apr; 12(3):S4-S5. PubMed ID: 11415700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of insole configurations on forefoot plantar pressure and walking convenience in diabetic patients with neuropathic feet.
    Guldemond NA; Leffers P; Schaper NC; Sanders AP; Nieman F; Willems P; Walenkamp GH
    Clin Biomech (Bristol); 2007 Jan; 22(1):81-7. PubMed ID: 17046124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform.
    Barnett S; Cunningham JL; West S
    Clin Biomech (Bristol); 2001 May; 16(4):353-7. PubMed ID: 11358623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform.
    Barnett S; Cunningham JL; West S
    Clin Biomech (Bristol); 2000 Dec; 15(10):781-5. PubMed ID: 11050363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-shoe plantar shear stress sensor design, calibration and evaluation for the diabetic foot.
    Haron AH; Li L; Shuang J; Lin C; Dawes H; Mansoubi M; Crosby D; Massey G; Reeves N; Bowling F; Cooper G; Weightman A
    PLoS One; 2024; 19(9):e0309514. PubMed ID: 39231175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification and mass production technique for three-quarter shoe insoles using non-weight-bearing plantar shapes.
    Sun SP; Chou YJ; Sue CC
    Appl Ergon; 2009 Jul; 40(4):630-5. PubMed ID: 18620334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearing the F-Scan mobile in-shoe pressure measurement system alters gait characteristics during running.
    Kong PW; De Heer H
    Gait Posture; 2009 Jan; 29(1):143-5. PubMed ID: 18621533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of pressure distribution below the metatarsals with different insoles in combat boots of the German Army for prevention of march fractures.
    Hinz P; Henningsen A; Matthes G; Jäger B; Ekkernkamp A; Rosenbaum D
    Gait Posture; 2008 Apr; 27(3):535-8. PubMed ID: 17692523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An umbilical data-acquisition system for measuring pressures between the foot and shoe.
    Zhu HS; Maalej N; Webster JG; Tompkins WJ; Bach-y-Rita P; Wertsch JJ
    IEEE Trans Biomed Eng; 1990 Sep; 37(9):908-11. PubMed ID: 2227977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.