These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 12167709)

  • 1. GAGA factor and the TFIID complex collaborate in generating an open chromatin structure at the Drosophila melanogaster hsp26 promoter.
    Leibovitch BA; Lu Q; Benjamin LR; Liu Y; Gilmour DS; Elgin SC
    Mol Cell Biol; 2002 Sep; 22(17):6148-57. PubMed ID: 12167709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular architecture of the hsp70 promoter after deletion of the TATA box or the upstream regulation region.
    Weber JA; Taxman DJ; Lu Q; Gilmour DS
    Mol Cell Biol; 1997 Jul; 17(7):3799-808. PubMed ID: 9199313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insensitivity of the present hsp26 chromatin structure to a TATA box mutation in Drosophila.
    Lu Q; Wallrath LL; Emanuel PA; Elgin SC; Gilmour DS
    J Biol Chem; 1994 Jun; 269(22):15906-11. PubMed ID: 8195245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Allan BD; Glaser RL; Lis JT; Elgin SC
    J Mol Biol; 1992 Jun; 225(4):985-98. PubMed ID: 1377279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The capacity to form H-DNA cannot substitute for GAGA factor binding to a (CT)n*(GA)n regulatory site.
    Lu Q; Teare JM; Granok H; Swede MJ; Xu J; Elgin SC
    Nucleic Acids Res; 2003 May; 31(10):2483-94. PubMed ID: 12736297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro.
    Wall G; Varga-Weisz PD; Sandaltzopoulos R; Becker PB
    EMBO J; 1995 Apr; 14(8):1727-36. PubMed ID: 7737124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter.
    Lu Q; Wallrath LL; Elgin SC
    EMBO J; 1995 Oct; 14(19):4738-46. PubMed ID: 7588603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of histone acetylation modification in basal and inducible expression of hsp26 gene in D. melanogaster.
    Zhao Y; Lu J; Sun H; Chen X; Huang B
    Mol Cell Biochem; 2007 Dec; 306(1-2):1-8. PubMed ID: 17619947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites.
    Shopland LS; Hirayoshi K; Fernandes M; Lis JT
    Genes Dev; 1995 Nov; 9(22):2756-69. PubMed ID: 7590251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual regulation of the Drosophila hsp26 promoter in vitro.
    Sandaltzopoulos R; Mitchelmore C; Bonte E; Wall G; Becker PB
    Nucleic Acids Res; 1995 Jul; 23(13):2479-87. PubMed ID: 7630725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of GAGA protein on Drosophila genes in vivo.
    O'Brien T; Wilkins RC; Giardina C; Lis JT
    Genes Dev; 1995 May; 9(9):1098-110. PubMed ID: 7744251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterochromatic silencing of Drosophila heat shock genes acts at the level of promoter potentiation.
    Cryderman DE; Tang H; Bell C; Gilmour DS; Wallrath LL
    Nucleic Acids Res; 1999 Aug; 27(16):3364-70. PubMed ID: 10454645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chromatin structure in regulating gene expression: the hsp26 gene of Drosophila melanogaster.
    Elgin SC; Granok H; Lu Q; Wallrath LL
    Cold Spring Harb Symp Quant Biol; 1993; 58():83-96. PubMed ID: 7956096
    [No Abstract]   [Full Text] [Related]  

  • 15. Chromatin potentiation of the hsp70 promoter is linked to GAGA-factor recruitment.
    Georgel PT
    Biochem Cell Biol; 2005 Aug; 83(4):555-65. PubMed ID: 16094459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of functional interaction between GAGA-containing sites from promoter regions of heat shock genes hsp26 and hsp70 in the model system of Drosophila melanogaster white gene.
    Melnikova LS; Proskuryakov KA; Georgiev PG
    Dokl Biochem Biophys; 2010; 434():266-9. PubMed ID: 20960253
    [No Abstract]   [Full Text] [Related]  

  • 17. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor.
    Tsukiyama T; Becker PB; Wu C
    Nature; 1994 Feb; 367(6463):525-32. PubMed ID: 8107823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAGA factor down-regulates its own promoter.
    Kosoy A; Pagans S; Espinas ML; Azorin F; Bernues J
    J Biol Chem; 2002 Nov; 277(44):42280-8. PubMed ID: 12200449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic footprinting of the hsp70 and histone H3 promoters in Drosophila embryos reveals novel protein-DNA interactions.
    Weber JA; Gilmour DS
    Nucleic Acids Res; 1995 Aug; 23(16):3327-34. PubMed ID: 7667110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin. Ga-ga over GAGA factor.
    Granok H; Leibovitch BA; Shaffer CD; Elgin SC
    Curr Biol; 1995 Mar; 5(3):238-41. PubMed ID: 7780729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.