These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 12168323)
1. Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory. Czosnyka ZH; Czosnyka M; Pickard JD Acta Neurochir Suppl; 2002; 81():27-30. PubMed ID: 12168323 [TBL] [Abstract][Full Text] [Related]
2. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme. Czosnyka Z; Czosnyka M; Richards HK; Pickard JD Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485 [TBL] [Abstract][Full Text] [Related]
8. Factors determining mean ICP in hydrocephalic patients with Hakim-programmable valve: implications of the parallel arrangement of the CSF outflow resistance and shunt. Taylor R; Czosnyka Z; Czosnyka M; Pickard JD Acta Neurochir Suppl; 2002; 81():23-6. PubMed ID: 12168312 [TBL] [Abstract][Full Text] [Related]
9. Shunt assistant valve: bench test investigations and clinical performance. Tokoro K; Suzuki S; Chiba Y; Tsuda M Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174 [TBL] [Abstract][Full Text] [Related]
10. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus. Rohde V; Mayfrank L; Ramakers VT; Gilsbach JM Acta Neurochir (Wien); 1998; 140(11):1127-34. PubMed ID: 9870057 [TBL] [Abstract][Full Text] [Related]
11. Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study. Lundkvist B; Eklund A; Kristensen B; Fagerlund M; Koskinen LO; Malm J J Neurosurg; 2001 May; 94(5):750-6. PubMed ID: 11354406 [TBL] [Abstract][Full Text] [Related]
13. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing. Venkataraman P; Browd SR; Lutz BR J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135 [TBL] [Abstract][Full Text] [Related]
14. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve. Frim DM; Lathrop D Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059 [TBL] [Abstract][Full Text] [Related]
15. Intracranial pressure monitoring in pediatric and adult patients with hydrocephalus and tentative shunt failure: a single-center experience over 10 years in 146 patients. Sæhle T; Eide PK J Neurosurg; 2015 May; 122(5):1076-86. PubMed ID: 25679270 [TBL] [Abstract][Full Text] [Related]
16. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture? Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395 [TBL] [Abstract][Full Text] [Related]
17. Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study. Weerakkody RA; Czosnyka M; Schuhmann MU; Schmidt E; Keong N; Santarius T; Pickard JD; Czosnyka Z Acta Neurol Scand; 2011 Aug; 124(2):85-98. PubMed ID: 21208195 [TBL] [Abstract][Full Text] [Related]
18. The use of the Codman-Medos Programmable Hakim valve in the management of patients with hydrocephalus: illustrative cases. Black PM; Hakim R; Bailey NO Neurosurgery; 1994 Jun; 34(6):1110-3. PubMed ID: 8084404 [TBL] [Abstract][Full Text] [Related]
19. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients. Zemack G; Romner B J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253 [TBL] [Abstract][Full Text] [Related]
20. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group. Pollack IF; Albright AL; Adelson PD Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]