These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 12169262)
1. Regional changes in human cerebral blood flow during dipyridamole stress: neural activation in the thalamus and prefrontal cortex. Ito H; Yokoyama I; Tamura Y; Kinoshita T; Hatazawa J; Kawashima R; Iida H Neuroimage; 2002 Jul; 16(3 Pt 1):788-93. PubMed ID: 12169262 [TBL] [Abstract][Full Text] [Related]
2. Effect of intravenous dipyridamole on cerebral blood flow in humans. A PET study. Ito H; Kinoshita T; Tamura Y; Yokoyama I; Iida H Stroke; 1999 Aug; 30(8):1616-20. PubMed ID: 10436110 [TBL] [Abstract][Full Text] [Related]
3. Effect of i.v. dipyridamole on cerebral blood flow, blood pressure, plasma adenosine and cAMP levels in rabbits. Hegedüs K; Keresztes T; Fekete I; Molnár L J Neurol Sci; 1997 May; 148(2):153-61. PubMed ID: 9129111 [TBL] [Abstract][Full Text] [Related]
4. Vasodilatory effect of adenosine triphosphate does not change cerebral blood flow: a PET study with (15)O-water. Hussain R; Tsuchida T; Kudo T; Kobayashi M; Tsujikawa T; Kiyono Y; Fujibayashi Y; Okazawa H Ann Nucl Med; 2009 Oct; 23(8):717-23. PubMed ID: 19728018 [TBL] [Abstract][Full Text] [Related]
5. Effect of adenosine and dipyridamole on cerebral blood flow. Heistad DD; Marcus ML; Gourley JK; Busija DW Am J Physiol; 1981 May; 240(5):H775-80. PubMed ID: 7235036 [TBL] [Abstract][Full Text] [Related]
6. Effect of adenosine on human cerebral blood flow as determined by positron emission tomography. Sollevi A; Ericson K; Eriksson L; Lindqvist C; Lagerkranser M; Stone-Elander S J Cereb Blood Flow Metab; 1987 Dec; 7(6):673-8. PubMed ID: 3121646 [TBL] [Abstract][Full Text] [Related]
7. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Peyron R; Laurent B; García-Larrea L Neurophysiol Clin; 2000 Oct; 30(5):263-88. PubMed ID: 11126640 [TBL] [Abstract][Full Text] [Related]
8. Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Heckers S; Curran T; Goff D; Rauch SL; Fischman AJ; Alpert NM; Schacter DL Biol Psychiatry; 2000 Oct; 48(7):651-7. PubMed ID: 11032976 [TBL] [Abstract][Full Text] [Related]
9. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. Bonhomme V; Fiset P; Meuret P; Backman S; Plourde G; Paus T; Bushnell MC; Evans AC J Neurophysiol; 2001 Mar; 85(3):1299-308. PubMed ID: 11247998 [TBL] [Abstract][Full Text] [Related]
10. Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. prolonged effects at high and low levels of stimulation. Henry TR; Bakay RA; Pennell PB; Epstein CM; Votaw JR Epilepsia; 2004 Sep; 45(9):1064-70. PubMed ID: 15329071 [TBL] [Abstract][Full Text] [Related]
11. Effects of dipyridamole in spontaneously hypertensive rabbits with diffuse chronic cerebral ischemia. Hegedüs K; Fekete I; Molnár L Eur J Pharmacol; 1993 Jun; 237(2-3):293-8. PubMed ID: 8365457 [TBL] [Abstract][Full Text] [Related]
12. Changes in human cerebral blood flow and myocardial blood flow during mental stress measured by dual positron emission tomography. Ito H; Kanno I; Hatazawa J; Miura S Ann Nucl Med; 2003 Jul; 17(5):381-6. PubMed ID: 12971636 [TBL] [Abstract][Full Text] [Related]
13. Reduced regional and global cerebral blood flow during fenoldopam-induced hypotension in volunteers. Prielipp RC; Wall MH; Groban L; Tobin JR; Fahey FH; Harkness BA; Stump DA; James RL; Cannon MA; Bennett J; Butterworth J Anesth Analg; 2001 Jul; 93(1):45-52. PubMed ID: 11429337 [TBL] [Abstract][Full Text] [Related]
14. Response of Cerebral Blood Flow and Blood Pressure to Dynamic Exercise: A Study Using PET. Hiura M; Nariai T; Sakata M; Muta A; Ishibashi K; Wagatsuma K; Tago T; Toyohara J; Ishii K; Maehara T Int J Sports Med; 2018 Feb; 39(3):181-188. PubMed ID: 29359277 [TBL] [Abstract][Full Text] [Related]
15. Effect of caffeine intake on myocardial hyperemic flow induced by adenosine triphosphate and dipyridamole. Kubo S; Tadamura E; Toyoda H; Mamede M; Yamamuro M; Magata Y; Mukai T; Kitano H; Tamaki N; Konishi J J Nucl Med; 2004 May; 45(5):730-8. PubMed ID: 15136619 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of pain-induced local cerebral blood flow changes in the rat sensory cortex and thalamus. Erdos B; Lacza Z; Tóth IE; Szelke E; Mersich T; Komjáti K; Palkovits M; Sándor P Brain Res; 2003 Jan; 960(1-2):219-27. PubMed ID: 12505675 [TBL] [Abstract][Full Text] [Related]
17. Imaging human cerebral pain modulation by dose-dependent opioid analgesia: a positron emission tomography activation study using remifentanil. Wagner KJ; Sprenger T; Kochs EF; Tölle TR; Valet M; Willoch F Anesthesiology; 2007 Mar; 106(3):548-56. PubMed ID: 17325514 [TBL] [Abstract][Full Text] [Related]
18. Regional neural dysfunctions in chronic schizophrenia studied with positron emission tomography. Kim JJ; Mohamed S; Andreasen NC; O'Leary DS; Watkins GL; Boles Ponto LL; Hichwa RD Am J Psychiatry; 2000 Apr; 157(4):542-8. PubMed ID: 10739412 [TBL] [Abstract][Full Text] [Related]
19. Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. Ito H; Kawashima R; Awata S; Ono S; Sato K; Goto R; Koyama M; Sato M; Fukuda H J Nucl Med; 1996 Mar; 37(3):410-4. PubMed ID: 8772633 [TBL] [Abstract][Full Text] [Related]
20. Regional differences in cerebral vascular response to PaCO2 changes in humans measured by positron emission tomography. Ito H; Yokoyama I; Iida H; Kinoshita T; Hatazawa J; Shimosegawa E; Okudera T; Kanno I J Cereb Blood Flow Metab; 2000 Aug; 20(8):1264-70. PubMed ID: 10950385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]