BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12169334)

  • 1. Circasemidian 12 h cycle of slow wave sleep under constant darkness.
    Hayashi M; Morikawa T; Hori T
    Clin Neurophysiol; 2002 Sep; 113(9):1505-16. PubMed ID: 12169334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arvicanthis ansorgei, a Novel Model for the Study of Sleep and Waking in Diurnal Rodents.
    Hubbard J; Ruppert E; Calvel L; Robin-Choteau L; Gropp CM; Allemann C; Reibel S; Sage-Ciocca D; Bourgin P
    Sleep; 2015 Jun; 38(6):979-88. PubMed ID: 25409107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between frequency of rapid eye movements in REM sleep and SWS rebound.
    De Gennaro L; Ferrara M; Bertini M
    J Sleep Res; 2000 Jun; 9(2):155-9. PubMed ID: 10849242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes.
    Shiromani PJ; Xu M; Winston EM; Shiromani SN; Gerashchenko D; Weaver DR
    Am J Physiol Regul Integr Comp Physiol; 2004 Jul; 287(1):R47-57. PubMed ID: 15031135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of prior wakefulness and circadian phase on nap sleep.
    Dinges DF
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 64(3):224-7. PubMed ID: 2427317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic alcohol treatment in rats alters sleep by fragmenting periods of vigilance cycling in the light period with extended wakenings.
    Mukherjee S; Simasko SM
    Behav Brain Res; 2009 Mar; 198(1):113-24. PubMed ID: 19014977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spontaneous K-complex during stage 2 sleep: is it the 'forerunner' of delta waves?
    De Gennaro L; Ferrara M; Bertini M
    Neurosci Lett; 2000 Sep; 291(1):41-3. PubMed ID: 10962149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental separation of time of day and homeostatic influences on sleep.
    Akerstedt T; Hume K; Minors D; Waterhouse J
    Am J Physiol; 1998 Apr; 274(4):R1162-8. PubMed ID: 9575984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep.
    Dijk DJ; Groeger JA; Stanley N; Deacon S
    Sleep; 2010 Feb; 33(2):211-23. PubMed ID: 20175405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence of the circadian rhythm of REM sleep: a variety of experimental manipulations of the sleep-wake cycle.
    Endo S; Kobayashi T; Yamamoto T; Fukuda H; Sasaki M; Ohta T
    Sleep; 1981 Sep; 4(3):319-28. PubMed ID: 7302463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans.
    Dijk DJ; Czeisler CA
    J Neurosci; 1995 May; 15(5 Pt 1):3526-38. PubMed ID: 7751928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of a 25-h sleep deprivation on daytime sleep in the middle-aged.
    Gaudreau H; Morettini J; Lavoie HB; Carrier J
    Neurobiol Aging; 2001; 22(3):461-8. PubMed ID: 11378253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony.
    Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD
    Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of the first sleep cycle.
    Gillberg M; Akerstedt T
    Sleep; 1991 Apr; 14(2):147-54. PubMed ID: 1866528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twenty-four-hour pattern of growth hormone secretion in the rhesus monkey: studies including alterations of the sleep/wake and sleep stage cycles.
    Quabbe HJ; Gregor M; Bumke-Vogt C; Eckhof A; Witt I
    Endocrinology; 1981 Aug; 109(2):513-22. PubMed ID: 7250052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of slow wave and REM sleep on thyropharyngeus and stylopharyngeus activity during induced central apneas.
    Feroah TR; Forster HV; Pan L; Wenninger J; Martino P; Rice T
    Respir Physiol; 2001 Jan; 124(2):129-40. PubMed ID: 11164204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep during Ramadan intermittent fasting.
    Roky R; Chapotot F; Hakkou F; Benchekroun MT; Buguet A
    J Sleep Res; 2001 Dec; 10(4):319-27. PubMed ID: 11903862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polygraphic analysis of the sleep-wake states and the REM sleep periodicity in domesticated pigs (Sus scrofa).
    Robert S; Dallaire A
    Physiol Behav; 1986; 37(2):289-93. PubMed ID: 3737741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of slow-wave sleep across the night: a comparison for infants, children, and adults.
    Bes F; Schulz H; Navelet Y; Salzarulo P
    Sleep; 1991 Feb; 14(1):5-12. PubMed ID: 1811320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep architecture, slow wave activity, and sleep spindles in adult patients with sleepwalking and sleep terrors.
    Espa F; Ondze B; Deglise P; Billiard M; Besset A
    Clin Neurophysiol; 2000 May; 111(5):929-39. PubMed ID: 10802466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.