These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 12169601)
21. Evaluation of nitrate removal by continuous culturing of an aerobic denitrifying bacterium, Paracoccus pantotrophus. Hasegawa-Kurisu K; Otani Y; Hanaki K Water Sci Technol; 2006; 54(8):219-28. PubMed ID: 17163031 [TBL] [Abstract][Full Text] [Related]
22. Escherichia coli K-12 genes essential for the synthesis of c-type cytochromes and a third nitrate reductase located in the periplasm. Grove J; Tanapongpipat S; Thomas G; Griffiths L; Crooke H; Cole J Mol Microbiol; 1996 Feb; 19(3):467-81. PubMed ID: 8830238 [TBL] [Abstract][Full Text] [Related]
23. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Simon J; Sänger M; Schuster SC; Gross R Mol Microbiol; 2003 Jul; 49(1):69-79. PubMed ID: 12823811 [TBL] [Abstract][Full Text] [Related]
24. Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. Butler CS; Ferguson SJ; Berks BC; Thomson AJ; Cheesman MR; Richardson DJ FEBS Lett; 2001 Jun; 500(1-2):71-4. PubMed ID: 11434929 [TBL] [Abstract][Full Text] [Related]
25. Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy. Butler CS; Fairhurst SA; Ferguson SJ; Thomson AJ; Berks BC; Richardson DJ; Lowe DJ Biochem J; 2002 May; 363(Pt 3):817-23. PubMed ID: 11964184 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the reduction of selenate and tellurite by nitrate reductases. Sabaty M; Avazeri C; Pignol D; Vermeglio A Appl Environ Microbiol; 2001 Nov; 67(11):5122-6. PubMed ID: 11679335 [TBL] [Abstract][Full Text] [Related]
27. Role of alternative promoter elements in transcription from the nar promoter of Escherichia coli. Walker MS; DeMoss JA J Bacteriol; 1992 Feb; 174(4):1119-23. PubMed ID: 1735706 [TBL] [Abstract][Full Text] [Related]
28. The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability. McNicholas PM; Gunsalus RP J Bacteriol; 2002 Jun; 184(12):3253-9. PubMed ID: 12029041 [TBL] [Abstract][Full Text] [Related]
29. Effect of carbon substrate and aeration on nitrate reduction and expression of the periplasmic and membrane-bound nitrate reductases in carbon-limited continuous cultures of Sears HJ; Spiro S; Richardson DJ Microbiology (Reading); 1997 Dec; 143(12):3767-3774. PubMed ID: 33657712 [TBL] [Abstract][Full Text] [Related]
30. Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. Stewart V; Bledsoe PJ; Chen LL; Cai A J Bacteriol; 2009 Feb; 191(3):996-1005. PubMed ID: 19060147 [TBL] [Abstract][Full Text] [Related]
31. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes. Baumann B; Snozzi M; Zehnder AJ; Van Der Meer JR J Bacteriol; 1996 Aug; 178(15):4367-74. PubMed ID: 8755862 [TBL] [Abstract][Full Text] [Related]
32. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. Nakano MM; Hoffmann T; Zhu Y; Jahn D J Bacteriol; 1998 Oct; 180(20):5344-50. PubMed ID: 9765565 [TBL] [Abstract][Full Text] [Related]
33. Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. Siddiqui RA; Warnecke-Eberz U; Hengsberger A; Schneider B; Kostka S; Friedrich B J Bacteriol; 1993 Sep; 175(18):5867-76. PubMed ID: 8376334 [TBL] [Abstract][Full Text] [Related]
34. nasST, two genes involved in the induction of the assimilatory nitrite-nitrate reductase operon (nasAB) of Azotobacter vinelandii. Gutierrez JC; Ramos F; Ortner L; Tortolero M Mol Microbiol; 1995 Nov; 18(3):579-91. PubMed ID: 8748040 [TBL] [Abstract][Full Text] [Related]
36. Performance of Paracoccus pantotrophus MA3 in heterotrophic nitrification-anaerobic denitrification using formic acid as a carbon source. Huang Q; Alengebawy A; Zhu X; Raza AF; Chen L; Chen W; Guo J; Ai P; Li D Bioprocess Biosyst Eng; 2022 Oct; 45(10):1661-1672. PubMed ID: 35984504 [TBL] [Abstract][Full Text] [Related]
37. Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Potter LC; Millington P; Griffiths L; Thomas GH; Cole JA Biochem J; 1999 Nov; 344 Pt 1(Pt 1):77-84. PubMed ID: 10548536 [TBL] [Abstract][Full Text] [Related]
38. Identification and characterization of the Staphylococcus carnosus nitrate reductase operon. Pantel I; Lindgren PE; Neubauer H; Götz F Mol Gen Genet; 1998 Jul; 259(1):105-14. PubMed ID: 9738886 [TBL] [Abstract][Full Text] [Related]
39. Nitrate-dependent [Fe(II)EDTA]2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Kumaraswamy R; Sjollema K; Kuenen G; van Loosdrecht M; Muyzer G Syst Appl Microbiol; 2006 Jun; 29(4):276-86. PubMed ID: 16682296 [TBL] [Abstract][Full Text] [Related]
40. Activation of the Escherichia coli nitrate reductase (narGHJI) operon by NarL and Fnr requires integration host factor. Schröder I; Darie S; Gunsalus RP J Biol Chem; 1993 Jan; 268(2):771-4. PubMed ID: 8419352 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]