These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 12171468)

  • 21. Modelling the long-term dynamics of radiocaesium in closed lakes.
    Bulgakov AA; Konoplev AV; Smith JT; Hilton J; Comans RN; Laptev GV; Christyuk BF
    J Environ Radioact; 2002; 61(1):41-53. PubMed ID: 12113505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecological half-life of 137Cs in fish from a stream contaminated by nuclear reactor effluents.
    Peles JD; Bryan AL; Garten CT; Ribble DO; Smith MH
    Sci Total Environ; 2000 Dec; 263(1-3):255-62. PubMed ID: 11194159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake and elimination of 137Cs by climbing perch (Anabus testudineus).
    Malek MA
    Health Phys; 1999 Dec; 77(6):719-23. PubMed ID: 10568552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of factors influencing accumulation of stable Sr and Cs in lake and coastal fish.
    Konovalenko L; Bradshaw C; Andersson E; Lindqvist D; Kautsky U
    J Environ Radioact; 2016 Aug; 160():64-79. PubMed ID: 27153476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global distribution of radionuclides (137Cs and 40K) in marine mammals.
    Yoshitome R; Kunito T; Ikemoto T; Tanabe S; Zenke H; Yamauchi M; Miyazaki N
    Environ Sci Technol; 2003 Oct; 37(20):4597-602. PubMed ID: 14594367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model testing using Chernobyl data: II. Assessment of the consequences of the radioactive contamination of the Chernobyl Nuclear Power Plant cooling pond.
    Kryshev II; Sazykina TG; Ryabov IN; Chumak VK; Zarubin OL
    Health Phys; 1996 Jan; 70(1):13-7. PubMed ID: 7499146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modelling the 137Cs ingestion dose from consumption of marine fish in Hong Kong.
    Poon CB; Au SM
    Radiat Prot Dosimetry; 2002; 98(2):199-209. PubMed ID: 11926370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 137Cs in freshwater fish in Finland since 1986--a statistical analysis with multivariate linear regression models.
    Saxén R; Sundell J
    J Environ Radioact; 2006; 87(1):62-76. PubMed ID: 16378666
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the dynamics of fish contamination by Chernobyl radiocaesium: an analytical solution based on potassium mass balance.
    Koulikov AO; Meili M
    J Environ Radioact; 2003; 66(3):309-26. PubMed ID: 12600762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A mechanistic sub-model predicting the influence of potassium on radiocesium uptake in aquatic biota.
    Håkanson L; Fernandez JA
    J Environ Radioact; 2001; 54(3):345-60. PubMed ID: 11381942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Prognosis of dynamics and risk of exceeding permissible levels of 137Cs and 90Sr contents in fish in the Kiev Reservoir at the late phase of the Chernobyl accident].
    Homutinin IuV; Kashparov VA; Kuz'menko AV; Pavliuchenko VV
    Radiats Biol Radioecol; 2013; 53(4):411-27. PubMed ID: 25427374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The "AQUASCOPE" simplified model for predicting 89,90Sr, 131I, and 134,137Cs in surface waters after a large-scale radioactive fallout.
    Smith JT; Belova NV; Bulgakov AA; Comans RN; Konoplev AV; Kudelsky AV; Madruga MJ; Voitsekhovitch OV; Zibold G
    Health Phys; 2005 Dec; 89(6):628-44. PubMed ID: 16282796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Accumulation and distribution of 137Cs and 90Sr radionuclides in the components of water-bottom sediments-macrophytes of Lake Malye Kirpichiky].
    Kablova KV; Deryagin VV; Levina SG; Sutyagin AA
    Radiats Biol Radioecol; 2014; 54(6):650-6. PubMed ID: 25980292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioaccumulation of cesium-137 by biota in different aquatic environments.
    Topcuoğlu S
    Chemosphere; 2001 Aug; 44(4):691-5. PubMed ID: 11482657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study on the levels of radioactivity in fish samples from the experimental lakes area in Ontario, Canada.
    Chen J; Rennie MD; Sadi B; Zhang W; St-Amant N
    J Environ Radioact; 2016 Mar; 153():222-230. PubMed ID: 26803403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of radiocaesium in an Austrian forest stand.
    Strebl F; Gerzabek MH; Bossew P; Kienzl K
    Sci Total Environ; 1999 Feb; 226(1):75-83. PubMed ID: 10077876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short- and long-term patterns of ¹³⁷Cs in fish and other aquatic organisms of small forest lakes in southern Finland since the Chernobyl accident.
    Rask M; Saxén R; Ruuhijärvi J; Arvola L; Järvinen M; Koskelainen U; Outola I; Vuorinen PJ
    J Environ Radioact; 2012 Jan; 103(1):41-7. PubMed ID: 22036157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discharge of 137Cs and 90Sr by Finnish rivers to the Baltic Sea in 1986-1996.
    Saxén R; Ilus E
    J Environ Radioact; 2001; 54(2):275-91. PubMed ID: 11378921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavior of 60Co and 134Cs in a Canadian Shield lake over 5 years.
    Bird GA; Schwartz WJ; Motycka M; Rosentreter J
    Sci Total Environ; 1998 Apr; 212(2-3):115-35. PubMed ID: 9573627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cesium accumulation by fish following acute input to lakes: a comparison of experimental and Chernobyl-impacted systems.
    Pinder JE; Hinton TG; Whicker FW; Smith JT
    J Environ Radioact; 2009 Jun; 100(6):456-67. PubMed ID: 19375835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.