BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 12171653)

  • 1. Coping with the cold: the cold shock response in the Gram-positive soil bacterium Bacillus subtilis.
    Weber MH; Marahiel MA
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):895-907. PubMed ID: 12171653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold shock response in Escherichia coli.
    Yamanaka K
    J Mol Microbiol Biotechnol; 1999 Nov; 1(2):193-202. PubMed ID: 10943550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold shock response in Bacillus subtilis.
    Graumann PL; Marahiel MA
    J Mol Microbiol Biotechnol; 1999 Nov; 1(2):203-9. PubMed ID: 10943551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementation of cold shock proteins by translation initiation factor IF1 in vivo.
    Weber MH; Beckering CL; Marahiel MA
    J Bacteriol; 2001 Dec; 183(24):7381-6. PubMed ID: 11717297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common mode of DNA binding to cold shock domains. Crystal structure of hexathymidine bound to the domain-swapped form of a major cold shock protein from Bacillus caldolyticus.
    Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U
    FEBS J; 2007 Mar; 274(5):1265-79. PubMed ID: 17266726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH.
    Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S
    Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress.
    Topanurak S; Sinchaikul S; Sookkheo B; Phutrakul S; Chen ST
    Proteomics; 2005 Nov; 5(17):4456-71. PubMed ID: 16222717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-rich DNA single strands bind to a preformed site on the bacterial cold shock protein Bs-CspB.
    Max KE; Zeeb M; Bienert R; Balbach J; Heinemann U
    J Mol Biol; 2006 Jul; 360(3):702-14. PubMed ID: 16780871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial cold shock responses.
    Weber MH; Marahiel MA
    Sci Prog; 2003; 86(Pt 1-2):9-75. PubMed ID: 12838604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation of genes and processes controlled by the quorum response in bacteria: characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis.
    Comella N; Grossman AD
    Mol Microbiol; 2005 Aug; 57(4):1159-74. PubMed ID: 16091051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold-induced putative DEAD box RNA helicases CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus subtilis.
    Hunger K; Beckering CL; Wiegeshoff F; Graumann PL; Marahiel MA
    J Bacteriol; 2006 Jan; 188(1):240-8. PubMed ID: 16352840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cold shock and adaptation.
    Thieringer HA; Jones PG; Inouye M
    Bioessays; 1998 Jan; 20(1):49-57. PubMed ID: 9504047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and characterization of the hsp 18.55 gene, a new member of the small heat shock gene family isolated from wine Lactobacillus plantarum.
    Spano G; Beneduce L; Perrotta C; Massa S
    Res Microbiol; 2005 Mar; 156(2):219-24. PubMed ID: 15748987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone-protease systems in regulation and protein quality control in Bacillus subtilis.
    Molière N; Turgay K
    Res Microbiol; 2009 Nov; 160(9):637-44. PubMed ID: 19781636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of cold shock proteins on transcription and translation studied in cell-free model systems.
    Hofweber R; Horn G; Langmann T; Balbach J; Kremer W; Schmitz G; Kalbitzer HR
    FEBS J; 2005 Sep; 272(18):4691-702. PubMed ID: 16156790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bacterial cold shock response at the level of DNA transcription, translation and chromosome dynamics].
    Golovlev EL
    Mikrobiologiia; 2003; 72(1):5-13. PubMed ID: 12698785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold shock response and adaptation at near-freezing temperature in microorganisms.
    Inouye M; Phadtare S
    Sci STKE; 2004 Jun; 2004(237):pe26. PubMed ID: 15199224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.