These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 12172515)

  • 1. Lumbar spinal strains associated with whiplash injury: a cadaveric study.
    Fast A; Sosner J; Begeman P; Thomas MA; Chiu T
    Am J Phys Med Rehabil; 2002 Sep; 81(9):645-50. PubMed ID: 12172515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal loads in the cervical spine during motor vehicle rear-end impacts: the effect of acceleration and head-to-head restraint proximity.
    Tencer AF; Mirza S; Bensel K
    Spine (Phila Pa 1976); 2002 Jan; 27(1):34-42. PubMed ID: 11805633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human lumbar facet joint capsule strains: II. Alteration of strains subsequent to anterior interbody fixation.
    Little JS; Ianuzzi A; Chiu JB; Baitner A; Khalsa PS
    Spine J; 2004; 4(2):153-62. PubMed ID: 15016392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of biomechanical mechanisms of whiplash injury from rear impacts.
    Tencer AF; Huber P; Mirza SK
    Annu Proc Assoc Adv Automot Med; 2003; 47():383-98. PubMed ID: 12941237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of rigid vs. dynamic instrumentation for stabilization of the degenerative lumbosacral spine.
    Korovessis P; Papazisis Z; Lambiris E
    Stud Health Technol Inform; 2002; 91():457-61. PubMed ID: 15457776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid cadaveric/surrogate model of thoracolumbar spine injury due to simulated fall from height.
    Ivancic PC
    Accid Anal Prev; 2013 Oct; 59():185-91. PubMed ID: 23792617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do "whiplash injuries" occur in low-speed rear impacts?
    Castro WH; Schilgen M; Meyer S; Weber M; Peuker C; Wörtler K
    Eur Spine J; 1997; 6(6):366-75. PubMed ID: 9455663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of acceleration level on lumbar spine injuries in military populations.
    Yoganandan N; Stemper BD; Baisden JL; Pintar FA; Paskoff GR; Shender BS
    Spine J; 2015 Jun; 15(6):1318-24. PubMed ID: 24374098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the head-neck complex in low-speed rear impact.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2003; 39():245-50. PubMed ID: 12724902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments.
    Umehara S; Zindrick MR; Patwardhan AG; Havey RM; Vrbos LA; Knight GW; Miyano S; Kirincic M; Kaneda K; Lorenz MA
    Spine (Phila Pa 1976); 2000 Jul; 25(13):1617-24. PubMed ID: 10870136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the crash pulse shape on the peak loading and the injury tolerance levels of the neck in in vitro low-speed side-collisions.
    Kettler A; Fruth K; Claes L; Wilke HJ
    J Biomech; 2006; 39(2):323-9. PubMed ID: 16321634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures.
    Hongo M; Abe E; Shimada Y; Murai H; Ishikawa N; Sato K
    Spine (Phila Pa 1976); 1999 Jun; 24(12):1197-202. PubMed ID: 10382245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human lumbar facet joint capsule strains: I. During physiological motions.
    Ianuzzi A; Little JS; Chiu JB; Baitner A; Kawchuk G; Khalsa PS
    Spine J; 2004; 4(2):141-52. PubMed ID: 15016391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft tissue injury threshold during simulated whiplash: a biomechanical investigation.
    Ito S; Ivancic PC; Panjabi MM; Cunningham BW
    Spine (Phila Pa 1976); 2004 May; 29(9):979-87. PubMed ID: 15105668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results.
    Korovessis P; Papazisis Z; Koureas G; Lambiris E
    Spine (Phila Pa 1976); 2004 Apr; 29(7):735-42. PubMed ID: 15087795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Strain distribution in the L1 vertebra under axial load and load transmitting behavior between the vertebral body and posterior elements].
    Ishikawa N
    Nihon Seikeigeka Gakkai Zasshi; 1995 Nov; 69(11):1136-46. PubMed ID: 8568369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.
    Hedenstierna S; Halldin P; Siegmund GP
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2626-33. PubMed ID: 19910765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biomechanical evaluation of whiplash using a multi-body dynamic model.
    Garcia T; Ravani B
    J Biomech Eng; 2003 Apr; 125(2):254-65. PubMed ID: 12751288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new acceleration apparatus for the study of whiplash with human cadaveric cervical spine specimens.
    Kettler A; Schmitt H; Simon U; Hartwig E; Kinzl L; Claes L; Wilke HJ
    J Biomech; 2004 Oct; 37(10):1607-13. PubMed ID: 15336936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.