These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12172661)

  • 21. Cholinergic modulation of the swimmeret motor system in crayfish.
    Braun G; Mulloney B
    J Neurophysiol; 1993 Dec; 70(6):2391-8. PubMed ID: 7907133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections.
    Finkel E; Etlin A; Cherniak M; Mor Y; Lev-Tov A; Anglister L
    J Comp Neurol; 2014 Oct; 522(15):3437-55. PubMed ID: 24752570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide from the laterodorsal tegmental neurons: its possible retrograde modulation on norepinephrine release from the axon terminal of the locus coeruleus neurons.
    Kodama T; Koyama Y
    Neuroscience; 2006; 138(1):245-56. PubMed ID: 16368196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opposing muscarinic and nicotinic modulation of hypoglossal motor output to genioglossus muscle in rats in vivo.
    Liu X; Sood S; Liu H; Horner RL
    J Physiol; 2005 Jun; 565(Pt 3):965-80. PubMed ID: 15817635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the effect of intrathecal administration of clonidine and yohimbine on the locomotion of intact and spinal cats.
    Giroux N; Reader TA; Rossignol S
    J Neurophysiol; 2001 Jun; 85(6):2516-36. PubMed ID: 11387398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?
    Cowley KC; Zaporozhets E; Maclean JN; Schmidt BJ
    J Neurophysiol; 2005 Dec; 94(6):3805-14. PubMed ID: 16120672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholinergic modulation of the locomotor network in the lamprey spinal cord.
    Quinlan KA; Placas PG; Buchanan JT
    J Neurophysiol; 2004 Sep; 92(3):1536-48. PubMed ID: 15152024
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord.
    Gabbay H; Delvolvé I; Lev-Tov A
    J Neurophysiol; 2002 Aug; 88(2):732-9. PubMed ID: 12163525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of intrathecal alpha1- and alpha2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats.
    Chau C; Barbeau H; Rossignol S
    J Neurophysiol; 1998 Jun; 79(6):2941-63. PubMed ID: 9636099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alpha-1 adrenoceptor agonists generate a "fast" NMDA receptor-independent motor rhythm in the neonatal rat spinal cord.
    Gabbay H; Lev-Tov A
    J Neurophysiol; 2004 Aug; 92(2):997-1010. PubMed ID: 15084642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Posterior hypothalamus cholinergic stimulation-induced activation of anterior hypothalamic area neurons is enhanced in spontaneously hypertensive rats.
    Kubo T; Hagiwara Y
    Brain Res; 2005 Nov; 1061(1):36-41. PubMed ID: 16216227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avian locomotion activated by brainstem infusion of neurotransmitter agonists and antagonists. I. Acetylcholine excitatory amino acids and substance P.
    Sholomenko GN; Funk GD; Steeves JD
    Exp Brain Res; 1991; 85(3):659-73. PubMed ID: 1717306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
    Jordan LM; McVagh JR; Noga BR; Cabaj AM; Majczyński H; Sławińska U; Provencher J; Leblond H; Rossignol S
    Front Neural Circuits; 2014; 8():132. PubMed ID: 25414645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intravenous morphine increases release of nitric oxide from spinal cord by an alpha-adrenergic and cholinergic mechanism.
    Xu Z; Tong C; Pan HL; Cerda SE; Eisenach JC
    J Neurophysiol; 1997 Oct; 78(4):2072-8. PubMed ID: 9325374
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of cellular and synaptic variability in the lamprey spinal cord.
    Parker D; Bevan S
    J Neurophysiol; 2007 Jan; 97(1):44-56. PubMed ID: 17021027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of cholinergic receptors in melanophore responses of amphibians.
    Ali AS; Peter J; Ali SA
    Acta Biol Hung; 1995; 46(1):61-73. PubMed ID: 8714764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].
    Bagrov IaIu; Manusova NB
    Tsitologiia; 2011; 53(6):537-41. PubMed ID: 21870511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of locomotion in marine mollusc Clione limacina. X. Effects of acetylcholine antagonists.
    Panchin YV; Sadreev RI; Arshavsky YI
    Exp Brain Res; 1995; 106(1):135-44. PubMed ID: 8542969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbachol induces a form of long-term potentiation in lateral amygdala.
    Park EJ; Nam RH; Choi S; Lee CJ
    Neuroreport; 2004 Jun; 15(8):1339-43. PubMed ID: 15167562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholinergic modulation of dopamine release and horizontal cell coupling in mudpuppy retina.
    Myhr KL; McReynolds JS
    Vision Res; 1996 Dec; 36(24):3933-8. PubMed ID: 9068846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.