These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 12173223)

  • 21. Mechanism of action of general anaesthetics--new information from molecular pharmacology.
    Thompson SA; Wafford K
    Curr Opin Pharmacol; 2001 Feb; 1(1):78-83. PubMed ID: 11712540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms of anaesthetics: lessons learned from creatures great and small.
    Hales TG
    Anaesthesia; 2011 May; 66(5):334-7. PubMed ID: 21453384
    [No Abstract]   [Full Text] [Related]  

  • 23. Inhibitory ligand-gated ion channels as substrates for general anesthetic actions.
    Zeller A; Jurd R; Lambert S; Arras M; Drexler B; Grashoff C; Antkowiak B; Rudolph U
    Handb Exp Pharmacol; 2008; (182):31-51. PubMed ID: 18175085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation by general anaesthetics of rat GABAA receptors comprised of alpha 1 beta 3 and beta 3 subunits expressed in human embryonic kidney 293 cells.
    Davies PA; Kirkness EF; Hales TG
    Br J Pharmacol; 1997 Mar; 120(5):899-909. PubMed ID: 9138697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General anesthetic actions on GABA
    Hayashiuchi M; Kitayama T; Morita K; Yamawaki Y; Oue K; Yoshinaka T; Asano S; Harada K; Kang Y; Hirata M; Irifune M; Okada M; Kanematsu T
    J Anesth; 2017 Aug; 31(4):531-538. PubMed ID: 28389811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General anesthetics selectively modulate glutamatergic and dopaminergic signaling via site-specific phosphorylation in vivo.
    Snyder GL; Galdi S; Hendrick JP; Hemmings HC
    Neuropharmacology; 2007 Oct; 53(5):619-30. PubMed ID: 17826804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of general anaesthetic cytotoxicity in murine cortical neurones in dissociated culture.
    Campbell LL; Tyson JA; Stackpole EE; Hokenson KE; Sherrill H; McKeon JE; Kim SA; Edmands SD; Suarez C; Hall AC
    Toxicology; 2011 Apr; 283(1):1-7. PubMed ID: 21277931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Closing the gap between the molecular and systemic actions of anesthetic agents.
    Antkowiak B
    Adv Pharmacol; 2015; 72():229-62. PubMed ID: 25600373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knockin' on the door of general anesthetic mechanisms: but will U.S. researchers be shut out?
    Harrison NL
    Anesth Analg; 2003 Sep; 97(3):616-618. PubMed ID: 12933370
    [No Abstract]   [Full Text] [Related]  

  • 30. Cortico-centric effects of general anesthetics on cerebrocortical evoked potentials.
    Voss LJ; Sleigh JW
    Neurosci Bull; 2015 Dec; 31(6):697-704. PubMed ID: 26480876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. II. Numerical simulations, spectral entropy, and correlation times.
    Steyn-Ross DA; Steyn-Ross ML; Wilcocks LC; Sleigh JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011918. PubMed ID: 11461299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Electrophysiological approach to mechanisms for actions of general anesthetics].
    Hirota K; Sasaki R
    Masui; 2011 May; 60(5):574-81. PubMed ID: 21626861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and properties of 3-(2-hydroxyethyl)-3-n-pentyldiazirine, a photoactivable general anesthetic.
    Husain SS; Forman SA; Kloczewiak MA; Addona GH; Olsen RW; Pratt MB; Cohen JB; Miller KW
    J Med Chem; 1999 Aug; 42(17):3300-7. PubMed ID: 10464016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. General anesthetics have differential inhibitory effects on gap junction channels and hemichannels in astrocytes and neurons.
    Liu X; Gangoso E; Yi C; Jeanson T; Kandelman S; Mantz J; Giaume C
    Glia; 2016 Apr; 64(4):524-36. PubMed ID: 26666873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct posttranslational modification of astrocytic connexin 43 proteins by the general anesthetic propofol in the cerebral cortex.
    Nuriya M; Yasui D; Yamada T; Aoki T; Yasui M
    Biochem Biophys Res Commun; 2018 Mar; 497(2):734-741. PubMed ID: 29462621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effects of Acute GABA Treatment on the Functional Connectivity and Network Topology of Cortical Cultures.
    Han Y; Li H; Lang Y; Zhao Y; Sun H; Zhang P; Ma X; Han J; Wang Q; Zhou J; Wang C
    Neurochem Res; 2017 May; 42(5):1394-1402. PubMed ID: 28290133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The GABAA-like autoreceptor is a pharmacologically novel GABA receptor.
    Minchin MC; Ennis C; Lattimer N; White JF; White AC; Lloyd GK
    Adv Biochem Psychopharmacol; 1992; 47():199-203. PubMed ID: 1324573
    [No Abstract]   [Full Text] [Related]  

  • 38. Influence of general anaesthesia on the brainstem.
    Bosch L; Fernández-Candil J; León A; Gambús PL
    Rev Esp Anestesiol Reanim; 2017 Mar; 64(3):157-167. PubMed ID: 27887735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective changes in thalamic and cortical GABAA receptor subunits in a model of acquired absence epilepsy in the rat.
    Li H; Kraus A; Wu J; Huguenard JR; Fisher RS
    Neuropharmacology; 2006 Jul; 51(1):121-8. PubMed ID: 16678865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro.
    Opitz T; De Lima AD; Voigt T
    J Neurophysiol; 2002 Nov; 88(5):2196-206. PubMed ID: 12424261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.