These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Shifts in the retinal image of a visual scene during saccades contribute to the perception of reached gaze direction in humans. Blouin J; Bresciani JP; Gauthier GM Neurosci Lett; 2004 Feb; 357(1):29-32. PubMed ID: 15036606 [TBL] [Abstract][Full Text] [Related]
5. Visual signals contribute to the coding of gaze direction. Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810 [TBL] [Abstract][Full Text] [Related]
6. Variables contributing to the coordination of rapid eye/head gaze shifts. Hanes DA; McCollum G Biol Cybern; 2006 Apr; 94(4):300-24. PubMed ID: 16538479 [TBL] [Abstract][Full Text] [Related]
8. Distributed population mechanism for the 3-D oculomotor reference frame transformation. Smith MA; Crawford JD J Neurophysiol; 2005 Mar; 93(3):1742-61. PubMed ID: 15537819 [TBL] [Abstract][Full Text] [Related]
9. Geometry of the superior colliculus mapping and efficient oculomotor computation. Tabareau N; Bennequin D; Berthoz A; Slotine JJ; Girard B Biol Cybern; 2007 Oct; 97(4):279-92. PubMed ID: 17690902 [TBL] [Abstract][Full Text] [Related]
10. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. Sommer MA; Wurtz RH J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558 [TBL] [Abstract][Full Text] [Related]
11. Role of superior colliculus in adaptive eye-head coordination during gaze shifts. Constantin AG; Wang H; Crawford JD J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087 [TBL] [Abstract][Full Text] [Related]
12. Spatial relationships of visuomotor transformations in the superior colliculus map. Marino RA; Rodgers CK; Levy R; Munoz DP J Neurophysiol; 2008 Nov; 100(5):2564-76. PubMed ID: 18753320 [TBL] [Abstract][Full Text] [Related]
13. What determines sustained visual attention? The impact of distracter positions, task difficulty and visual fields compared. Kraft A; Pape N; Hagendorf H; Schmidt S; Naito A; Brandt SA Brain Res; 2007 Feb; 1133(1):123-35. PubMed ID: 17174284 [TBL] [Abstract][Full Text] [Related]
14. Neuronal mechanisms in visual perception. Pöppel E; Held R; Dowling JE Neurosci Res Program Bull; 1977 Oct; 15(3):313-9, 323-553. PubMed ID: 414150 [No Abstract] [Full Text] [Related]
15. Anisotropy in the representation of direction preferences in cat area 18. Ribot J; Tanaka S; O'Hashi K; Ajima A Eur J Neurosci; 2008 May; 27(10):2773-80. PubMed ID: 18489580 [TBL] [Abstract][Full Text] [Related]
16. Optic flow and eye movements. Lappe M; Hoffmann KP Int Rev Neurobiol; 2000; 44():29-47. PubMed ID: 10605640 [No Abstract] [Full Text] [Related]
17. Temporal encoding for the control of saccades. Westine DM; Enderle JD Biomed Sci Instrum; 1990; 26():175-80. PubMed ID: 2334764 [TBL] [Abstract][Full Text] [Related]
18. Predictive remapping of visual features precedes saccadic eye movements. Melcher D Nat Neurosci; 2007 Jul; 10(7):903-7. PubMed ID: 17589507 [TBL] [Abstract][Full Text] [Related]
19. 1-D Vision: Encoding of Eye Movements by Simple Receptive Fields. Ahissar E; Ozana S; Arieli A Perception; 2015; 44(8-9):986-94. PubMed ID: 26562913 [TBL] [Abstract][Full Text] [Related]
20. Neuronal activity in the primary visual cortex of the cat freely viewing natural images. Maldonado PE; Babul CM Neuroscience; 2007 Feb; 144(4):1536-43. PubMed ID: 17187932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]