BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 12173734)

  • 1. The camera mouse: visual tracking of body features to provide computer access for people with severe disabilities.
    Betke M; Gips J; Fleming P
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):1-10. PubMed ID: 12173734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of tilt sensors in human-computer mouse interface for people with disabilities.
    Chen YL
    IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):289-94. PubMed ID: 11561665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System for assisted mobility using eye movements based on electrooculography.
    Barea R; Boquete L; Mazo M; López E
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):209-18. PubMed ID: 12611358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface.
    Wilson JJ; Palaniappan R
    J Neural Eng; 2011 Apr; 8(2):025026. PubMed ID: 21436532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a robotic device for facilitating learning by children who have severe disabilities.
    Cook AM; Meng MQ; Gu JJ; Howery K
    IEEE Trans Neural Syst Rehabil Eng; 2002 Sep; 10(3):178-87. PubMed ID: 12503783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of alternative computer input devices used by people with disabilities.
    Turpin G; Armstrong J; Frost P; Fine B; Ward C; Pinnington L
    J Med Eng Technol; 2005; 29(3):119-29. PubMed ID: 16019881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive software for head-operated computer controls.
    LoPresti EF; Brienza DM
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):102-11. PubMed ID: 15068193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experiment on a novel user input for computer interface utilizing tongue input for the severely disabled.
    Kencana AP; Heng J
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):351-9. PubMed ID: 19117196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Access to computer-based leisure for individuals with profound disabilities.
    Bache J; Derwent G
    NeuroRehabilitation; 2008; 23(4):343-50. PubMed ID: 18820399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a computer input system for people with disabilities using a commercial mouse and switches.
    Shih CH; Shih CT
    Disabil Rehabil Assist Technol; 2009 Nov; 4(6):414-21. PubMed ID: 19817655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assisting people with multiple disabilities and minimal motor behavior to improve computer Drag-and-Drop efficiency through a mouse wheel.
    Shih CH
    Res Dev Disabil; 2011; 32(6):2867-74. PubMed ID: 21645987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users.
    Zeng Q; Burdet E; Teo CL
    Neurorehabil Neural Repair; 2009 Jun; 23(5):494-504. PubMed ID: 19074687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tooth-click control of a hands-free computer interface.
    Simpson T; Broughton C; Gauthier MJ; Prochazka A
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):2050-6. PubMed ID: 18632367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of tooth-click triggering and speech recognition in assistive technology for computer access.
    Simpson T; Gauthier M; Prochazka A
    Neurorehabil Neural Repair; 2010 Feb; 24(2):188-94. PubMed ID: 19679651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmentative communication based on realtime vocal cord vibration detection.
    Falk TH; Chan J; Duez P; Teachman G; Chau T
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):159-63. PubMed ID: 20071275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and quantitative performance evaluation of a noninvasive EMG computer interface.
    Choi C; Micera S; Carpaneto J; Kim J
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):188-91. PubMed ID: 19224732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.