BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 12173752)

  • 1. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs.
    Chow AY; Pardue MT; Perlman JI; Ball SL; Chow VY; Hetling JR; Peyman GA; Liang C; Stubbs EB; Peachey NS
    J Rehabil Res Dev; 2002; 39(3):313-21. PubMed ID: 12173752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantation of silicon chip microphotodiode arrays into the cat subretinal space.
    Chow AY; Pardue MT; Chow VY; Peyman GA; Liang C; Perlman JI; Peachey NS
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):86-95. PubMed ID: 11482368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays.
    Pardue MT; Stubbs EB; Perlman JI; Narfström K; Chow AY; Peachey NS
    Exp Eye Res; 2001 Sep; 73(3):333-43. PubMed ID: 11520108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effect of subretinal implants in the RCS rat.
    Pardue MT; Phillips MJ; Yin H; Sippy BD; Webb-Wood S; Chow AY; Ball SL
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):674-82. PubMed ID: 15671299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subretinal semiconductor microphotodiode array.
    Peyman G; Chow AY; Liang C; Chow VY; Perlman JI; Peachey NS
    Ophthalmic Surg Lasers; 1998 Mar; 29(3):234-41. PubMed ID: 9547778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subretinal implantation of semiconductor-based photodiodes: progress and challenges.
    Peachey NS; Chow AY
    J Rehabil Res Dev; 1999 Oct; 36(4):371-6. PubMed ID: 10678460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial.
    Roessler G; Laube T; Brockmann C; Kirschkamp T; Mazinani B; Goertz M; Koch C; Krisch I; Sellhaus B; Trieu HK; Weis J; Bornfeld N; Röthgen H; Messner A; Mokwa W; Walter P
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3003-8. PubMed ID: 19420330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progress of subretinal implant based on electronic stimulation].
    Wang X; Peng C; Zhang Y; Zhang S; Hu N; Yang L; Zheng E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):212-4, 219. PubMed ID: 18435293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs.
    Morimoto T; Kamei M; Nishida K; Sakaguchi H; Kanda H; Ikuno Y; Kishima H; Maruo T; Konoma K; Ozawa M; Nishida K; Fujikado T
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6785-92. PubMed ID: 21743012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subretinal implantation and testing of polyimide film electrodes in cats.
    Sachs HG; Schanze T; Wilms M; Rentzos A; Brunner U; Gekeler F; Hesse L
    Graefes Arch Clin Exp Ophthalmol; 2005 May; 243(5):464-8. PubMed ID: 15578200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of electrically evoked cortical potential thresholds generated with subretinal or suprachoroidal placement of a microelectrode array in the rabbit.
    Yamauchi Y; Franco LM; Jackson DJ; Naber JF; Ziv RO; Rizzo JF; Kaplan HJ; Enzmann V
    J Neural Eng; 2005 Mar; 2(1):S48-56. PubMed ID: 15876654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography.
    Völker M; Shinoda K; Sachs H; Gmeiner H; Schwarz T; Kohler K; Inhoffen W; Bartz-Schmidt KU; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):792-9. PubMed ID: 15179515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats.
    Pardue MT; Phillips MJ; Yin H; Fernandes A; Cheng Y; Chow AY; Ball SL
    J Neural Eng; 2005 Mar; 2(1):S39-47. PubMed ID: 15876653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility of materials implanted into the subretinal space of Yucatan pigs.
    Montezuma SR; Loewenstein J; Scholz C; Rizzo JF
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3514-22. PubMed ID: 16877423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implantation of episcleral electrodes via anterior orbitotomy for stimulation of the retina with induced photoreceptor degeneration: an in vivo feasibility study on a conceptual visual prosthesis.
    Siu T; Morley J
    Acta Neurochir (Wien); 2008 May; 150(5):477-85; discussion 485. PubMed ID: 18385925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.