These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12174043)

  • 1. Determining the spatial distribution of viable and nonviable bacteria in hydrated microcosm dental plaques by viability profiling.
    Hope CK; Clements D; Wilson M
    J Appl Microbiol; 2002; 93(3):448-55. PubMed ID: 12174043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring the thickness of an outer layer of viable bacteria in an oral biofilm by viability mapping.
    Hope CK; Wilson M
    J Microbiol Methods; 2003 Sep; 54(3):403-10. PubMed ID: 12842487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms.
    Filoche SK; Coleman MJ; Angker L; Sissons CH
    J Microbiol Methods; 2007 Jun; 69(3):489-96. PubMed ID: 17408789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm structure and cell vitality in a laboratory model of subgingival plaque.
    Hope CK; Wilson M
    J Microbiol Methods; 2006 Sep; 66(3):390-8. PubMed ID: 16487610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural studies of microcosm dental plaques grown under different nutritional conditions.
    Pratten J; Andrews CS; Craig DQ; Wilson M
    FEMS Microbiol Lett; 2000 Aug; 189(2):215-8. PubMed ID: 10930741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spatial distribution of dead and vital bacteria in the native dental biofilm].
    Ji YK; Ling JQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2007 May; 42(5):294-7. PubMed ID: 17686283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.
    Fernández CE; Aspiras MB; Dodds MW; González-Cabezas C; Rickard AH
    J Appl Microbiol; 2017 Mar; 122(3):796-808. PubMed ID: 27981713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new in vitro model for the study of microbial microleakage around dental restorations: a preliminary qualitative evaluation.
    Matharu S; Spratt DA; Pratten J; Ng YL; Mordan N; Wilson M; Gulabivala K
    Int Endod J; 2001 Oct; 34(7):547-53. PubMed ID: 11601773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva.
    Wong L; Sissons C
    Arch Oral Biol; 2001 Jun; 46(6):477-86. PubMed ID: 11311195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ex vivo gingival-biofilm consortia.
    Vitkov L; Hannig M; Krautgartner WD; Herrmann M; Fuchs K; Klappacher M; Hermann A
    Lett Appl Microbiol; 2005; 41(5):404-11. PubMed ID: 16238643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES; Kang SM; Ko HY; Kwon HK; Kim BI
    J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chlorhexidine on multi-species biofilms.
    Wilson M; Patel H; Noar JH
    Curr Microbiol; 1998 Jan; 36(1):13-8. PubMed ID: 9405740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of vital and dead microorganisms in dental biofilms.
    Auschill TM; Arweiler NB; Netuschil L; Brecx M; Reich E; Sculean A
    Arch Oral Biol; 2001 May; 46(5):471-6. PubMed ID: 11286812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reproducible oral microcosm biofilm model for testing dental materials.
    Rudney JD; Chen R; Lenton P; Li J; Li Y; Jones RS; Reilly C; Fok AS; Aparicio C
    J Appl Microbiol; 2012 Dec; 113(6):1540-53. PubMed ID: 22925110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyses of biofilms accumulated on dental restorative materials.
    de Fúcio SB; Puppin-Rontani RM; de Carvalho FG; Mattos-Graner Rde O; Correr-Sobrinho L; Garcia-Godoy F
    Am J Dent; 2009 Jun; 22(3):131-6. PubMed ID: 19650591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials.
    Nance WC; Dowd SE; Samarian D; Chludzinski J; Delli J; Battista J; Rickard AH
    J Antimicrob Chemother; 2013 Nov; 68(11):2550-60. PubMed ID: 23800904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composition and antibiotic resistance profile of microcosm dental plaques before and after exposure to tetracycline.
    Ready D; Roberts AP; Pratten J; Spratt DA; Wilson M; Mullany P
    J Antimicrob Chemother; 2002 May; 49(5):769-75. PubMed ID: 12003970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and application of a flow system for in vitro multispecies oral biofilm formation.
    Blanc V; Isabal S; Sánchez MC; Llama-Palacios A; Herrera D; Sanz M; León R
    J Periodontal Res; 2014 Jun; 49(3):323-32. PubMed ID: 23815431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caries-related plaque microcosm biofilms developed in microplates.
    Filoche SK; Soma KJ; Sissons CH
    Oral Microbiol Immunol; 2007 Apr; 22(2):73-9. PubMed ID: 17311629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical disruption of oral biofilms by sodium bicarbonate: an in vitro study.
    Pratten J; Wiecek J; Mordan N; Lomax A; Patel N; Spratt D; Middleton AM
    Int J Dent Hyg; 2016 Aug; 14(3):209-14. PubMed ID: 26198308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.