BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 12174211)

  • 1. The probability that similar haplotypes are identical by descent.
    Nolte IM; Te Meerman GJ
    Ann Hum Genet; 2002 May; 66(Pt 3):195-209. PubMed ID: 12174211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of identity by descent probabilities from marker-haplotypes.
    Meuwissen TH; Goddard ME
    Genet Sel Evol; 2001; 33(6):605-34. PubMed ID: 11742632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal haplotype structure for linkage disequilibrium-based fine mapping of quantitative trait loci using identity by descent.
    Grapes L; Firat MZ; Dekkers JC; Rothschild MF; Fernando RL
    Genetics; 2006 Mar; 172(3):1955-65. PubMed ID: 16322505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PIGS: improved estimates of identity-by-descent probabilities by probabilistic IBD graph sampling.
    Park DS; Baran Y; Hormozdiari F; Eng C; Torgerson DG; Burchard EG; Zaitlen N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S9. PubMed ID: 25860540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives of identity by descent (IBD) mapping in founder populations.
    Te Meerman GJ; Van der Meulen MA; Sandkuijl LA
    Clin Exp Allergy; 1995 Nov; 25 Suppl 2():97-102. PubMed ID: 8590355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multipoint identity-by-descent prediction using dense markers to map quantitative trait loci and estimate effective population size.
    Meuwissen TH; Goddard ME
    Genetics; 2007 Aug; 176(4):2551-60. PubMed ID: 17565953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values.
    Calus MP; Meuwissen TH; Windig JJ; Knol EF; Schrooten C; Vereijken AL; Veerkamp RF
    Genet Sel Evol; 2009 Jan; 41(1):11. PubMed ID: 19284677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes.
    Browning SR
    Genetics; 2008 Apr; 178(4):2123-32. PubMed ID: 18430938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of IBD probabilities with dense SNP or sequence data.
    Keith JM; McRae A; Duffy D; Mengersen K; Visscher PM
    Genet Epidemiol; 2008 Sep; 32(6):513-9. PubMed ID: 18357613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linked vs unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression.
    Koopman WJ; Li Y; Coart E; van de Weg WE; Vosman B; Roldán-Ruiz I; Smulders MJ
    Mol Ecol; 2007 Jan; 16(2):243-56. PubMed ID: 17217342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient identification of identical-by-descent status in pedigrees with many untyped individuals.
    Li X; Yin X; Li J
    Bioinformatics; 2010 Jun; 26(12):i191-8. PubMed ID: 20529905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SNP streak model for the identification of genetic regions identical-by-descent.
    Leibon G; Rockmore DN; Pollak MR
    Stat Appl Genet Mol Biol; 2008; 7(1):Article16. PubMed ID: 18518857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A simple and rapid method for calculating identity-by-descent matrices using multiple markers.
    Pong-Wong R; George AW; Woolliams JA; Haley CS
    Genet Sel Evol; 2001; 33(5):453-71. PubMed ID: 11712969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microsatellite haplotypes of Polish cystic fibrosis alleles: delta F508 chromosomes demonstrate a North-South haplotype frequency gradient.
    Witt M; Reis A; Cichy W; Dziechciowska K
    Hum Hered; 1996; 46(6):310-4. PubMed ID: 8956026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identical intragenic microsatellite haplotype found in cystic fibrosis chromosomes bearing mutation G551D in Irish, English, Scottish, Breton and Czech patients.
    Cashman SM; Patino A; Martinez A; Garcia-Delgado M; Miedzybrodzka Z; Schwarz M; Shrimpton A; Ferec C; Raguenes O; Macek M
    Hum Hered; 1995; 45(1):6-12. PubMed ID: 7896303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fast and accurate method for detection of IBD shared haplotypes in genome-wide SNP data.
    Bjelland DW; Lingala U; Patel PS; Jones M; Keller MC
    Eur J Hum Genet; 2017 May; 25(5):617-624. PubMed ID: 28176766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identity-by-descent analyses for measuring population dynamics and selection in recombining pathogens.
    Henden L; Lee S; Mueller I; Barry A; Bahlo M
    PLoS Genet; 2018 May; 14(5):e1007279. PubMed ID: 29791438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cystic fibrosis transmembrane regulator haplotypes in households of patients with cystic fibrosis.
    Furgeri DT; Marson FAL; Correia CAA; Ribeiro JD; Bertuzzo CS
    Gene; 2018 Jan; 641():137-143. PubMed ID: 29054758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistics on continuous IBD data: exact distribution evaluation for a pair of full(half)-sibs and a pair of a (great-) grandchild with a (great-) grandparent.
    Stefanov VT
    BMC Genet; 2002 May; 3():7. PubMed ID: 11996673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fast and Simple Method for Detecting Identity-by-Descent Segments in Large-Scale Data.
    Zhou Y; Browning SR; Browning BL
    Am J Hum Genet; 2020 Apr; 106(4):426-437. PubMed ID: 32169169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.