These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 12174574)

  • 1. [Lipid metabolism of caddisfly larvae at low pH].
    Regerand TI; Nefedova ZA; Toĭvonen LT; Dubrovina LV; Vuory KM; Markova LV; Ruokolaĭnen TR
    Ontogenez; 2002; 33(4):285-91. PubMed ID: 12174574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of aluminum and iron on lipid metabolism in aquatic invertebrates].
    Regerand TI; Nefedova ZA; nemova NN; Ruokalaĭnen TR; Toĭvonen LV; Dubrovina LV; Vuori KM; Markova LV
    Prikl Biokhim Mikrobiol; 2005; 41(2):220-7. PubMed ID: 15859468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fatty acids in mature larvae of Hydropsyche dissimulata Kum. Bot. and of H. pellucidula Curt. (Insecta, Trichoptera)].
    Moretti GP; Cianficconi F; Marucchini C; Federici F
    Boll Soc Ital Biol Sper; 1976 Dec; 52(24):2120-3. PubMed ID: 1030961
    [No Abstract]   [Full Text] [Related]  

  • 4. Research on possible medical use of silk produced by caddisfly larvae of Hydropsyche angustipennis (Trichoptera, Insecta).
    Tszydel M; Zabłotni A; Wojciechowska D; Michalak M; Krucińska I; Szustakiewicz K; Maj M; Jaruszewska A; Strzelecki J
    J Mech Behav Biomed Mater; 2015 May; 45():142-53. PubMed ID: 25723346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipids in mammalian hibernation and artificial hypobiosis.
    Kolomiytseva IK
    Biochemistry (Mosc); 2011 Dec; 76(12):1291-9. PubMed ID: 22150274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring metal and metalloid bioaccumulation in Hydropsyche (Trichoptera, Hydropsychidae) to evaluate metal pollution in a mining river. Whole body versus tissue content.
    Solà C; Prat N
    Sci Total Environ; 2006 Apr; 359(1-3):221-31. PubMed ID: 15907976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous measurement of uptake and elimination of cadmium by caddisfly (Trichoptera: Hydropsychidae) larvae using stable isotope tracers.
    Evans RD; Balch GC; Evans HE; Welbourn PM
    Environ Toxicol Chem; 2002 May; 21(5):1032-9. PubMed ID: 12013125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucine transport in brush border membrane vesicles from freshwater insect larvae.
    Forcella M; Berra E; Giacchini R; Parenti P
    Arch Insect Biochem Physiol; 2006 Nov; 63(3):110-22. PubMed ID: 17048243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetic costs of case construction in the caddisfly Limnephilus rhombicus: direct impacts on larvae and delayed impacts on adults.
    Mondy N; Cathalan E; Hemmer C; Voituron Y
    J Insect Physiol; 2011 Jan; 57(1):197-202. PubMed ID: 21075110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pH stress on lipid composition of Saccharomyces cerevisiae.
    Singh B; Oberoi GK; Sharma SC
    Indian J Exp Biol; 1990 May; 28(5):430-3. PubMed ID: 2205568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomarkers in caddisfly larvae of the species Hydropsyche pellucidula (Curtis, 1834) (Trichoptera: Hydropsychidae) measured in natural populations and after short term exposure to fenitrothion.
    Berra E; Forcella M; Giacchini R; Rossaro B; Parenti P
    Bull Environ Contam Toxicol; 2006 May; 76(5):863-70. PubMed ID: 16786458
    [No Abstract]   [Full Text] [Related]  

  • 12. The characterization of ion regulation in Amazonian mosquito larvae: evidence of phenotypic plasticity, population-based disparity, and novel mechanisms of ion uptake.
    Patrick ML; Gonzalez RJ; Wood CM; Wilson RW; Bradley TJ; Val AL
    Physiol Biochem Zool; 2002; 75(3):223-36. PubMed ID: 12177826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new model system for lipid interactions in stratum corneum vesicles: effects of lipid composition, calcium, and pH.
    Hatfield RM; Fung LW
    Biochemistry; 1999 Jan; 38(2):784-91. PubMed ID: 9888819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and elimination of lead, zinc, and copper by caddisfly larvae (Trichoptera: Hydropsychidae) using stable isotope tracers.
    Evans RD; Balch GC; Evans HE; Welbourn PM
    Arch Environ Contam Toxicol; 2006 Jul; 51(1):35-42. PubMed ID: 16477394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of dietary phospholipid on lipase activity, antioxidant capacity and lipid metabolism-related gene expression in large yellow croaker larvae (Larimichthys crocea).
    Cai Z; Feng S; Xiang X; Mai K; Ai Q
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Nov; 201():46-52. PubMed ID: 27354252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein composition of silk filaments spun under water by caddisfly larvae.
    Yonemura N; Sehnal F; Mita K; Tamura T
    Biomacromolecules; 2006 Dec; 7(12):3370-8. PubMed ID: 17154465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparative biochemical study of brain phospholipids in insects].
    Parnova RG
    Zh Evol Biokhim Fiziol; 1979; 15(6):553-60. PubMed ID: 516940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines.
    Stewart RJ; Wang CS
    Biomacromolecules; 2010 Apr; 11(4):969-74. PubMed ID: 20196534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Descriptions of larvae of three species of Hydropsyche (Trichoptera, Hydropsychidae) from China.
    Xu JH; Sun CH; Wang BX
    Zootaxa; 2018 Jan; 4374(1):1-24. PubMed ID: 29689811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid transport through the enterocytes of larval Aeshna cyanea (Insecta, Odonata).
    Kukulies J; Komnick H
    Eur J Cell Biol; 1984 May; 34(1):118-29. PubMed ID: 6734623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.