BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12175170)

  • 21. Influence of mobile phase acid-base equilibria on the chromatographic behaviour of protolytic compounds.
    Rosés M; Bosch E
    J Chromatogr A; 2002 Dec; 982(1):1-30. PubMed ID: 12489853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase.
    Balkatzopoulou P; Fasoula S; Gika H; Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2015 May; 1396():72-6. PubMed ID: 25900744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of polar peptides using a silica hydride column and high aqueous content mobile phases.
    Yang Y; Boysen RI; Kulsing C; Matyska MT; Pesek JJ; Hearn MT
    J Sep Sci; 2013 Sep; 36(18):3019-25. PubMed ID: 23873603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the pH of binary mobile phases for reversed-phase liquid chromatography.
    Rosés M
    J Chromatogr A; 2004 May; 1037(1-2):283-98. PubMed ID: 15214671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selection of mobile phase in high-performance liquid chromatographic determination for medicines.
    Sugiyama T; Matsuyama R; Usui S; Katagiri Y; Hirano K
    Biol Pharm Bull; 2000 Mar; 23(3):274-8. PubMed ID: 10726878
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delta conversion parameter between pH scales (SWpH and SSpH) in acetonitrile/water mixtures at various compositions and temperatures.
    Gagliardi LG; Castells CB; Ràfols C; Rosés M; Bosch E
    Anal Chem; 2007 Apr; 79(8):3180-7. PubMed ID: 17358047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gradient retention prediction of acid-base analytes in reversed phase liquid chromatography: a simplified approach for acetonitrile-water mobile phases.
    Andrés A; Rosés M; Bosch E
    J Chromatogr A; 2014 Nov; 1370():129-34. PubMed ID: 25454137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of ionization and the nature of the mobile phase in quantitative structure-retention relationship studies.
    Ruiz-Angel MJ; Carda-Broch S; García-Alvarez-Coque MC; Berthod A
    J Chromatogr A; 2005 Jan; 1063(1-2):25-34. PubMed ID: 15700454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatographic behaviour of ionic liquid cations in view of quantitative structure-retention relationship.
    Molíková M; Markuszewski MJ; Kaliszan R; Jandera P
    J Chromatogr A; 2010 Feb; 1217(8):1305-12. PubMed ID: 20060528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extent of the influence of phosphate buffer and ionic liquids on the reduction of the silanol effect in a C18 stationary phase.
    Carda-Broch S; García-Alvarez-Coque MC; Ruiz-Angel MJ
    J Chromatogr A; 2018 Jul; 1559():112-117. PubMed ID: 28602502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of chromatographic retention, pKa values and optimization of the separation of polyphenolic acids in strawberries.
    Sanli N; Fonrodona G; Barrón D; Ozkan G; Barbosa J
    J Chromatogr A; 2002 Nov; 975(2):299-309. PubMed ID: 12456084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulating phenol high-performance liquid chromatography retention times as the pH changes. Mobile phase pH versus buffer pH.
    Törnblom JK; Bureyko TF; MacKinnon CD
    J Chromatogr A; 2005 Nov; 1095(1-2):68-73. PubMed ID: 16275284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of temperature on the chromatographic retention of ionizable compounds. III. Modeling retention of pharmaceuticals as a function of eluent pH and column temperature in RPLC.
    Gagliardi LG; Castells CB; Ràfols C; Rosés M; Bosch E
    J Sep Sci; 2008 Apr; 31(6-7):969-80. PubMed ID: 18381700
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced fluidity liquid chromatography for hydrophilic interaction separation of nucleosides.
    Treadway JW; Philibert GS; Olesik SV
    J Chromatogr A; 2011 Sep; 1218(35):5897-902. PubMed ID: 21236439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatography of substituted benzoic acids with methanol-water-carbon dioxide mixtures.
    Wen D; Olesik SV
    J Chromatogr A; 2001 Oct; 931(1-2):41-52. PubMed ID: 11695520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the dissociation constants (pKa) of basic acetylcholinesterase inhibitors by reversed-phase liquid chromatography.
    Bartolini M; Bertucci C; Gotti R; Tumiatti V; Cavalli A; Recanatini M; Andrisano V
    J Chromatogr A; 2002 Jun; 958(1-2):59-67. PubMed ID: 12134831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of internal standards in reversed-phase liquid chromatography. III. Evaluation of an alternative solvation parameter model to correlate and predict the retention of ionizable compounds.
    Li J
    J Chromatogr A; 2002 Dec; 982(2):209-23. PubMed ID: 12489877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range.
    McCalley DV
    J Chromatogr A; 2015 Sep; 1411():41-9. PubMed ID: 26275863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retention of ionizable compounds on HPLC. 6. pH measurements with the glass electrode in methanol-water mixtures.
    Canals I; Oumada FZ; Rosés M; Bosch E
    J Chromatogr A; 2001 Mar; 911(2):191-202. PubMed ID: 11293580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.