These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 12175176)
1. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen. Kim YC; Sasaki S; Yano K; Ikebukuro K; Hashimoto K; Karube I Anal Chem; 2002 Aug; 74(15):3858-64. PubMed ID: 12175176 [TBL] [Abstract][Full Text] [Related]
2. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode. Kim YC; Lee KH; Sasaki S; Hashimoto K; Ikebukuro K; Karube I Anal Chem; 2000 Jul; 72(14):3379-82. PubMed ID: 10939416 [TBL] [Abstract][Full Text] [Related]
3. Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research. Chen J; Zhang J; Xian Y; Ying X; Liu M; Jin L Water Res; 2005 Apr; 39(7):1340-6. PubMed ID: 15862333 [TBL] [Abstract][Full Text] [Related]
4. Determination of chemical oxygen demand in fresh waters using flow injection with on-line UV-photocatalytic oxidation and spectrophotometric detection. Dan D; Sandford RC; Worsfold PJ Analyst; 2005 Feb; 130(2):227-32. PubMed ID: 15665978 [TBL] [Abstract][Full Text] [Related]
5. Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode. Li L; Zhang S; Li G; Zhao H Anal Chim Acta; 2012 Nov; 754():47-53. PubMed ID: 23140953 [TBL] [Abstract][Full Text] [Related]
6. A portable photoelectrochemical probe for rapid determination of chemical oxygen demand in wastewaters. Zhang S; Li L; Zhao H Environ Sci Technol; 2009 Oct; 43(20):7810-5. PubMed ID: 19921898 [TBL] [Abstract][Full Text] [Related]
7. Nanostructured TiO2 photocatalysts for the determination of organic pollutants. Qiu J; Zhang S; Zhao H J Hazard Mater; 2012 Apr; 211-212():381-8. PubMed ID: 22133353 [TBL] [Abstract][Full Text] [Related]
8. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit. Geun Jeong B; Min Yoon S; Ho Choi C; Koang Kwon K; Sik Hyun M; Heui Yi D; Soo Park H; Kim M; Joo Kim H J Environ Monit; 2007 Dec; 9(12):1352-7. PubMed ID: 18049774 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry. Boopathy R; Sekaran G J Hazard Mater; 2013 Sep; 260():286-95. PubMed ID: 23770619 [TBL] [Abstract][Full Text] [Related]
10. The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter. GilPavas E; Betancourt A; Angulo M; Dobrosz-Gómez I; Gómez-García MA Water Sci Technol; 2009; 60(11):2809-18. PubMed ID: 19934502 [TBL] [Abstract][Full Text] [Related]
11. A miniature photoelectrochemical sensor based on organic electrochemical transistor for sensitive determination of chemical oxygen demand in wastewaters. Liao J; Lin S; Zeng M; Yang Y Water Res; 2016 May; 94():296-304. PubMed ID: 26971805 [TBL] [Abstract][Full Text] [Related]
12. Photocatalytic degradation characteristics of different organic compounds at TiO2 nanoporous film electrodes with mixed anatase/ rutile phases. Jiang D; Zhang S; Zhao H Environ Sci Technol; 2007 Jan; 41(1):303-8. PubMed ID: 17265963 [TBL] [Abstract][Full Text] [Related]
13. Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip. Hao N; Dai Z; Xiong M; Han X; Zuo Y; Qian J; Wang K Anal Chem; 2021 Jun; 93(24):8393-8398. PubMed ID: 34101434 [TBL] [Abstract][Full Text] [Related]
14. Sensing of chemical oxygen demand (COD) by amperometric detection-dependence of current signal on concentration and type of organic species. Lambertz S; Franke M; Stelter M; Braeutigam P Environ Monit Assess; 2023 May; 195(6):630. PubMed ID: 37129679 [TBL] [Abstract][Full Text] [Related]
15. Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand. Wang C; Wu J; Wang P; Ao Y; Hou J; Qian J Anal Chim Acta; 2013 Mar; 767():141-7. PubMed ID: 23452798 [TBL] [Abstract][Full Text] [Related]
16. A surface-fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand. Zhu L; Chen Y; Wu Y; Li X; Tang H Anal Chim Acta; 2006 Jul; 571(2):242-7. PubMed ID: 17723445 [TBL] [Abstract][Full Text] [Related]
17. Cu-TiO2/Ti dual rotating disk photocatalytic (PC) reactor: dual electrode degradation facilitated by spontaneous electron transfer. Xu Y; He Y; Jia J; Zhong D; Wang Y Environ Sci Technol; 2009 Aug; 43(16):6289-94. PubMed ID: 19746727 [TBL] [Abstract][Full Text] [Related]
18. Portable Photoelectrochromic Visualization Sensor for Detection of Chemical Oxygen Demand. Dai Z; Hao N; Xiong M; Han X; Zuo Y; Wang K Anal Chem; 2020 Oct; 92(19):13604-13609. PubMed ID: 32924512 [TBL] [Abstract][Full Text] [Related]
19. Study on photocatalytic oxidation for determination of the low chemical oxygen demand using a nano-TiO2-Ce(SO4)2 coexisted system. Chai Y; Ding H; Zhang Z; Xian Y; Pan Z; Jin L Talanta; 2006 Jan; 68(3):610-5. PubMed ID: 18970364 [TBL] [Abstract][Full Text] [Related]
20. A high throughput chemiluminescence method for determination of chemical oxygen demand in waters. Yao H; Wu B; Qu H; Cheng Y Anal Chim Acta; 2009 Feb; 633(1):76-80. PubMed ID: 19110119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]