These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12175288)

  • 1. Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance.
    Myakov A; Nieman L; Wicky L; Utzinger U; Richards-Kortum R; Sokolov K
    J Biomed Opt; 2002 Jul; 7(3):388-97. PubMed ID: 12175288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms.
    Nieman L; Myakov A; Aaron J; Sokolov K
    Appl Opt; 2004 Feb; 43(6):1308-19. PubMed ID: 15008534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures.
    Mourant JR; Johnson TM; Carpenter S; Guerra A; Aida T; Freyer JP
    J Biomed Opt; 2002 Jul; 7(3):378-87. PubMed ID: 12175287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber optic probes for biomedical optical spectroscopy.
    Utzinger U; Richards-Kortum RR
    J Biomed Opt; 2003 Jan; 8(1):121-47. PubMed ID: 12542388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subdiffuse scattering model for single fiber reflectance spectroscopy.
    Post AL; Sterenborg HJCM; Woltjer FG; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2020 Jan; 25(1):1-11. PubMed ID: 31920047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the contribution of cell body and intracellular organelles to the backward light scattering.
    Kalashnikov M; Choi W; Hunter M; Yu CC; Dasari RR; Feld MS
    Opt Express; 2012 Jan; 20(2):816-26. PubMed ID: 22274427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications.
    Sharma M; Marple E; Reichenberg J; Tunnell JW
    Rev Sci Instrum; 2014 Aug; 85(8):083101. PubMed ID: 25173240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating cancerous tissues from noncancerous tissues using single-fiber reflectance spectroscopy with different fiber diameters.
    Sircan-Kuçuksayan A; Denkceken T; Canpolat M
    J Biomed Opt; 2015 Nov; 20(11):115007. PubMed ID: 26590218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements.
    Mourant JR; Johnson TM; Los G; Bigio IJ
    Phys Med Biol; 1999 May; 44(5):1397-417. PubMed ID: 10368027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fiber optic probe design to measure depth-limited optical properties in-vivo with low-coherence enhanced backscattering (LEBS) spectroscopy.
    Mutyal NN; Radosevich A; Gould B; Rogers JD; Gomes A; Turzhitsky V; Backman V
    Opt Express; 2012 Aug; 20(18):19643-57. PubMed ID: 23037017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].
    Chen WK; Fang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):770-4. PubMed ID: 27400522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology.
    Sokolov K; Drezek R; Gossage K; Richards-Kortum R
    Opt Express; 1999 Dec; 5(13):302-17. PubMed ID: 19401735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of spectral variation from spectroscopy to spectral imaging.
    Gebhart SC; Majumder SK; Mahadevan-Jansen A
    Appl Opt; 2007 Mar; 46(8):1343-60. PubMed ID: 17318255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and construction of a light-delivery system for photodynamic therapy.
    Bellnier DA; Wood LM; Potter WR; Weishaupt KR; Oseroff AR
    Med Phys; 1999 Aug; 26(8):1552-8. PubMed ID: 10501055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing.
    Yadav TK; Narayanaswamy R; Abu Bakar MH; Kamil YM; Mahdi MA
    Opt Express; 2014 Sep; 22(19):22802-7. PubMed ID: 25321749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging human epithelial properties with polarized light-scattering spectroscopy.
    Gurjar RS; Backman V; Perelman LT; Georgakoudi I; Badizadegan K; Itzkan I; Dasari RR; Feld MS
    Nat Med; 2001 Nov; 7(11):1245-8. PubMed ID: 11689891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.