BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 12175297)

  • 1. In vivo human retinal imaging by Fourier domain optical coherence tomography.
    Wojtkowski M; Leitgeb R; Kowalczyk A; Bajraszewski T; Fercher AF
    J Biomed Opt; 2002 Jul; 7(3):457-63. PubMed ID: 12175297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-resolution ophthalmic optical coherence tomography.
    Drexler W; Morgner U; Ghanta RK; Kärtner FX; Schuman JS; Fujimoto JG
    Nat Med; 2001 Apr; 7(4):502-7. PubMed ID: 11283681
    [No Abstract]   [Full Text] [Related]  

  • 3. Retinal imaging with a low-cost micromachined membrane deformable mirror.
    Bartsch DU; Zhu L; Sun PC; Fainman S; Freeman WR
    J Biomed Opt; 2002 Jul; 7(3):451-6. PubMed ID: 12175296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of polarization sensitive optical coherence tomography and Stokes vector determination.
    de Boer JF; Milner TE
    J Biomed Opt; 2002 Jul; 7(3):359-71. PubMed ID: 12175285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured illumination microscopy for in-vivo human retinal imaging: a theoretical assessment.
    Chetty S; Gruppetta S
    Opt Express; 2012 Nov; 20(23):25700-10. PubMed ID: 23187388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stokes vector analysis of adaptive optics images of the retina.
    Song H; Zhao Y; Qi X; Chui YT; Burns SA
    Opt Lett; 2008 Jan; 33(2):137-9. PubMed ID: 18197217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography.
    Pircher M; Zawadzki RJ; Evans JW; Werner JS; Hitzenberger CK
    Opt Lett; 2008 Jan; 33(1):22-4. PubMed ID: 18157245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography.
    Jiao S; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):350-8. PubMed ID: 12175284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye.
    Hofer H; Sredar N; Queener H; Li C; Porter J
    Opt Express; 2011 Jul; 19(15):14160-71. PubMed ID: 21934779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography of the human retina.
    Hee MR; Izatt JA; Swanson EA; Huang D; Schuman JS; Lin CP; Puliafito CA; Fujimoto JG
    Arch Ophthalmol; 1995 Mar; 113(3):325-32. PubMed ID: 7887846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution imaging of living retina through optic adaptive retinal imaging system.
    Jiang C; Wang W; Ling N; Xu G; Rao X; Li X; Zhang Y
    Yan Ke Xue Bao; 2002 Sep; 18(3):131-5. PubMed ID: 15510740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of retinal vessel measurements using adaptive optics scanning laser ophthalmoscopy and optical coherence tomography.
    Arichika S; Uji A; Ooto S; Muraoka Y; Yoshimura N
    Jpn J Ophthalmol; 2016 May; 60(3):166-71. PubMed ID: 26902975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lens based adaptive optics scanning laser ophthalmoscope.
    Felberer F; Kroisamer JS; Hitzenberger CK; Pircher M
    Opt Express; 2012 Jul; 20(16):17297-310. PubMed ID: 23038283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidimensional en-face OCT imaging of the retina.
    Rosen RB; Hathaway M; Rogers J; Pedro J; Garcia P; Laissue P; Dobre GM; Podoleanu AG
    Opt Express; 2009 Mar; 17(5):4112-33. PubMed ID: 19259250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels.
    Werkmeister RM; Dragostinoff N; Pircher M; Götzinger E; Hitzenberger CK; Leitgeb RA; Schmetterer L
    Opt Lett; 2008 Dec; 33(24):2967-9. PubMed ID: 19079508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner.
    Oldenburg AL; Reynolds JJ; Marks DL; Boppart SA
    Appl Opt; 2003 Aug; 42(22):4606-11. PubMed ID: 12916629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulated retinal image capture (ERICA) to test, train and validate processing of retinal images.
    Young LK; Smithson HE
    Sci Rep; 2021 May; 11(1):11225. PubMed ID: 34045507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive-optics ultrahigh-resolution optical coherence tomography.
    Hermann B; Fernández EJ; Unterhuber A; Sattmann H; Fercher AF; Drexler W; Prieto PM; Artal P
    Opt Lett; 2004 Sep; 29(18):2142-4. PubMed ID: 15460883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical applications of optical coherence tomography.
    Baumal CR
    Curr Opin Ophthalmol; 1999 Jun; 10(3):182-8. PubMed ID: 10537777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomographic reconstruction of the retina using a confocal scanning laser ophthalmoscope.
    Vieira P; Manivannan A; Lim CS; Sharp P; Forrester JV
    Physiol Meas; 1999 Feb; 20(1):1-19. PubMed ID: 10374823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.