BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 12175297)

  • 21. High-resolution retinal imaging of cone-rod dystrophy.
    Wolfing JI; Chung M; Carroll J; Roorda A; Williams DR
    Ophthalmology; 2006 Jun; 113(6):1019.e1. PubMed ID: 16650474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy.
    Podoleanu AG; Dobre GM; Cucu RG; Rosen R; Garcia P; Nieto J; Will D; Gentile R; Muldoon T; Walsh J; Yannuzzi LA; Fisher Y; Orlock D; Weitz R; Rogers JA; Dunne S; Boxer A
    J Biomed Opt; 2004; 9(1):86-93. PubMed ID: 14715059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution imaging of diabetic retinopathy lesions using an adaptive optics retinal camera.
    Cristescu IE; Ochinciuc R; Balta F; Zagrean L
    Rom J Ophthalmol; 2019; 63(1):29-34. PubMed ID: 31198895
    [No Abstract]   [Full Text] [Related]  

  • 24. Laser-tissue interaction and artifacts in confocal scanning laser ophthalmoscopy and tomography.
    Bartsch DU; Freeman WR
    Neurosci Biobehav Rev; 1993; 17(4):459-67. PubMed ID: 8309654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography.
    Srinivasan VJ; Wojtkowski M; Fujimoto JG; Duker JS
    Opt Lett; 2006 Aug; 31(15):2308-10. PubMed ID: 16832468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MULTIMODAL IMAGING OF ACUTE EXUDATIVE POLYMORPHOUS VITELLIFORM MACULOPATHY WITH OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY.
    Skondra D; Nesper PL; Fawzi AA
    Retin Cases Brief Rep; 2019 Summer; 13(3):195-198. PubMed ID: 28520626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography.
    Seelamantula CS; Villiger ML; Leitgeb RA; Unser M
    J Opt Soc Am A Opt Image Sci Vis; 2008 Jul; 25(7):1762-71. PubMed ID: 18594634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy.
    Rasta SH; Manivannan A; Sharp PF
    J Biomed Opt; 2012 Nov; 17(11):116005. PubMed ID: 23117800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging.
    Sampson DM; Alonso-Caneiro D; Chew AL; Lamey T; McLaren T; De Roach J; Chen FK
    PLoS One; 2016; 11(12):e0168275. PubMed ID: 27959968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-gated Fourier-domain optical coherence tomography.
    Muller MS; Webster PJ; Fraser JM
    Opt Lett; 2007 Nov; 32(22):3336-8. PubMed ID: 18026299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The construction of a model eye for investigation of laser-tissue interactions in scanning laser ophthalmoscopy.
    Rakebrandt F; North RV; Erichsen JT; Drasdo N; Fowler C; Cowey A; Morgan JE
    Optom Vis Sci; 2003 Mar; 80(3):252-8. PubMed ID: 12637837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical coherence tomography for ultrahigh resolution in vivo imaging.
    Fujimoto JG
    Nat Biotechnol; 2003 Nov; 21(11):1361-7. PubMed ID: 14595364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processing of medical images using real-time optical Fourier processing.
    Panchangam A; Sastry KV; Rao DV; DeCristofano BS; Kimball BR; Nakashima M
    Med Phys; 2001 Jan; 28(1):22-7. PubMed ID: 11213918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier-domain digital holographic optical coherence imaging of living tissue.
    Jeong K; Turek JJ; Nolte DD
    Appl Opt; 2007 Aug; 46(22):4999-5008. PubMed ID: 17676107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging of macular diseases with optical coherence tomography.
    Puliafito CA; Hee MR; Lin CP; Reichel E; Schuman JS; Duker JS; Izatt JA; Swanson EA; Fujimoto JG
    Ophthalmology; 1995 Feb; 102(2):217-29. PubMed ID: 7862410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography.
    Kitaguchi Y; Fujikado T; Kusaka S; Yamaguchi T; Mihashi T; Tano Y
    Am J Ophthalmol; 2009 Jul; 148(1):97-104.e2. PubMed ID: 19327747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature.
    Zhang P; Zam A; Jian Y; Wang X; Li Y; Lam KS; Burns ME; Sarunic MV; Pugh EN; Zawadzki RJ
    J Biomed Opt; 2015; 20(12):126005. PubMed ID: 26677070
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units.
    Li J; Bloch P; Xu J; Sarunic MV; Shannon L
    Appl Opt; 2011 May; 50(13):1832-8. PubMed ID: 21532660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tracking optical coherence tomography.
    Ferguson RD; Hammer DX; Paunescu LA; Beaton S; Schuman JS
    Opt Lett; 2004 Sep; 29(18):2139-41. PubMed ID: 15460882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser scanning tomography to diagnose and monitor glaucoma.
    Weinreb RN
    Curr Opin Ophthalmol; 1993 Apr; 4(2):3-6. PubMed ID: 10148455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.