These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12175300)

  • 1. Photon pathlength determination based on spatially resolved diffuse reflectance.
    Nilsson H; Larsson M; Nilsson GE; Strömberg T
    J Biomed Opt; 2002 Jul; 7(3):478-85. PubMed ID: 12175300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.
    Larsson M; Nilsson H; Strömberg T
    Appl Opt; 2003 Jan; 42(1):124-34. PubMed ID: 12518831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon migration in turbid media with anisotropic optical properties.
    Dudko OK; Weiss GH; Chernomordik V; Gandjbakhche AH
    Phys Med Biol; 2004 Sep; 49(17):3979-89. PubMed ID: 15470918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.
    Kienle A; Patterson MS
    Phys Med Biol; 1997 Sep; 42(9):1801-19. PubMed ID: 9308085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of the light emerging from a diffusive medium: angular dependence and flux at the external boundary.
    Martelli F; Sassaroli A; Zaccanti G; Yamada Y
    Phys Med Biol; 1999 May; 44(5):1257-75. PubMed ID: 10368017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental test of theoretical models for time-resolved reflectance.
    Cubeddu R; Pifferi A; Taroni P; Torricelli A; Valentini G
    Med Phys; 1996 Sep; 23(9):1625-33. PubMed ID: 8892260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.
    Zhou Y; Fu X; Ying Y; Fang Z
    Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of sampling depth and photon pathlength in laser Doppler flowmetry.
    Jakobsson A; Nilsson GE
    Med Biol Eng Comput; 1993 May; 31(3):301-7. PubMed ID: 8412384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model.
    Chatterjee S; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3279-82. PubMed ID: 26736992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study.
    Liebert A; Zołek N; Maniewski R
    Phys Med Biol; 2006 Nov; 51(22):5737-51. PubMed ID: 17068362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of single Monte Carlo methods for prediction of reflectance from turbid media.
    Martinelli M; Gardner A; Cuccia D; Hayakawa C; Spanier J; Venugopalan V
    Opt Express; 2011 Sep; 19(20):19627-42. PubMed ID: 21996904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modeling of light propagation in turbid media under illumination of a continuous-wave beam.
    Wang A; Lu R; Xie L
    Appl Opt; 2016 Jan; 55(1):95-103. PubMed ID: 26835627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths.
    Fawzi YS; Youssef AB; el-Batanony MH; Kadah YM
    Appl Opt; 2003 Nov; 42(31):6398-411. PubMed ID: 14649284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV; Jacques SL
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of estimation of optical properties of sub superficial structures in multi layered tissue model using distribution function method.
    Żołek N; Rix H; Botwicz M
    Comput Methods Programs Biomed; 2020 Jan; 183():105084. PubMed ID: 31580969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.