These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12175387)

  • 1. A comparative review of extracorporeal shock wave generation.
    Wilbert DM
    BJU Int; 2002 Sep; 90(5):507-11. PubMed ID: 12175387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of an expansion chamber during standard and tandem extracorporeal shock wave lithotripsy.
    Fernández F; Fernández G; Loske AM
    J Endourol; 2009 Apr; 23(4):693-7. PubMed ID: 19335160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of extracorporeal shock wave lithotripsy on pacemaker function.
    Langberg J; Abber J; Thuroff JW; Griffin JC
    Pacing Clin Electrophysiol; 1987 Sep; 10(5):1142-6. PubMed ID: 2444938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock wave physics.
    Preminger GM
    Am J Kidney Dis; 1991 Apr; 17(4):431-5. PubMed ID: 2008912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Extracorporeal Shock Wave Lithotripsy Delivery Rates Achieves Excellent Outcomes for Ureteral Stones: Results of a Prospective Randomized Trial.
    Nguyen DP; Hnilicka S; Kiss B; Seiler R; Thalmann GN; Roth B
    J Urol; 2015 Aug; 194(2):418-23. PubMed ID: 25661296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracorporeal shock wave lithotripsy in pediatric patients using a late generation portable lithotriptor: experience at Children's Hospital Boston.
    Nelson CP; Diamond DA; Cendron M; Peters CA; Cilento BG
    J Urol; 2008 Oct; 180(4 Suppl):1865-8. PubMed ID: 18721967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pain in extracorporeal shock-wave lithotripsy: a comparison of different lithotripters in volunteers.
    Schneider HT; Hummel T; Janowitz P; Ott R; Neuhaus H; Swobodnik W; Pauli E; Kobal G; Ell C
    Gastroenterology; 1992 Feb; 102(2):640-6. PubMed ID: 1732133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preoperative nomograms for predicting stone-free rate after extracorporeal shock wave lithotripsy.
    Kanao K; Nakashima J; Nakagawa K; Asakura H; Miyajima A; Oya M; Ohigashi T; Murai M
    J Urol; 2006 Oct; 176(4 Pt 1):1453-6; discussion 1456-7. PubMed ID: 16952658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The efficacy of a range of contact media as coupling agents in extracorporeal shockwave lithotripsy.
    Cartledge JJ; Cross WR; Lloyd SN; Joyce AD
    BJU Int; 2001 Sep; 88(4):321-4. PubMed ID: 11564013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management of Proximal Ureteric Stones: Extracorporeal Shock Wave Lithotripsy (ESWL) Versus Ureterorenoscopic Lithotripsy (URSL).
    Joshi HN; Shrestha B; Karmacharya RM; Makaju S; Koju R; Gyawali D
    Kathmandu Univ Med J (KUMJ); 2017 Oct.-Dec.; 15(60):343-346. PubMed ID: 30580354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the safety profile of treatment with a large number of shock waves per session in extracorporeal lithotripsy.
    Budía Alba A; López Acón JD; Polo-Rodrigo A; Bahílo-Mateu P; Trassierra-Villa M; Boronat-Tormo F
    Actas Urol Esp; 2015 Jun; 39(5):291-5. PubMed ID: 25582924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an experimental electrohydraulic discharge device for extracorporeal shock wave lithotripsy: Pressure field of sparker array.
    Li G; Connors BA; Schaefer RB; Gallagher JJ; Evan AP
    J Acoust Soc Am; 2017 Nov; 142(5):3147. PubMed ID: 29195423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy.
    Zhou Y; Cocks FH; Preminger GM; Zhong P
    J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The principle of extracorporeal shock wave lithotriptor and its locating system].
    Yin J; Zhong ZL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(2):124-6, 123. PubMed ID: 16104177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of synchronous twin pulse technique for shock wave lithotripsy: determination of optimal parameters for in vitro stone fragmentation.
    Sheir KZ; Zabihi N; Lee D; Teichman JM; Rehman J; Sundaram CP; Heimbach D; Hesse A; Delvecchio F; Zhong P; Preminger GM; Clayman RV
    J Urol; 2003 Dec; 170(6 Pt 1):2190-4. PubMed ID: 14634376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What makes a shock wave efficient in lithotripsy?
    Granz B; Köhler G
    J Stone Dis; 1992 Apr; 4(2):123-8. PubMed ID: 10149177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.
    Fovargue DE; Mitran S; Smith NB; Sankin GN; Simmons WN; Zhong P
    J Acoust Soc Am; 2013 Aug; 134(2):1598-609. PubMed ID: 23927200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy.
    Wang JC; Zhou Y
    Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Physical-technical principles of extracorporeal shockwave therapy (ESWT)].
    Gerdesmeyer L; Maier M; Haake M; Schmitz C
    Orthopade; 2002 Jul; 31(7):610-7. PubMed ID: 12219657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of energy density and acoustic cavitation in shock wave lithotripsy.
    Loske AM
    Ultrasonics; 2010 Feb; 50(2):300-5. PubMed ID: 19819511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.