These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 12175387)

  • 21. Tandem shock wave cavitation enhancement for extracorporeal lithotripsy.
    Loske AM; Prieto FE; Fernandez F; van Cauwelaert J
    Phys Med Biol; 2002 Nov; 47(22):3945-57. PubMed ID: 12476975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.
    Yılmaz B; Çiftçi E
    Comput Methods Programs Biomed; 2013 Jun; 110(3):389-98. PubMed ID: 23261077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Urolithiasis--a change in therapeutic methods extracorporeal shock wave lithotripsy using a Dornier kidney lithotripter HM3].
    Yamamoto K; Kishimoto T; Sakamoto W; Sugimoto T; Iimori H; Kanasawa T; Wada S; Senju M; Nakatani T; Sugimura K
    Hinyokika Kiyo; 1989 Dec; 35(12):2093-8. PubMed ID: 2618909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracorporeal shock-wave lithotripsy: one-year experience with the Dornier lithotripter. 1985.
    Fuchs G; Miller K; Rassweiler J; Eisenberger F
    Eur Urol; 2006 Sep; 50(3):402-6. PubMed ID: 16972343
    [No Abstract]   [Full Text] [Related]  

  • 25. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shock wave-bubble interaction near soft and rigid boundaries during lithotripsy: numerical analysis by the improved ghost fluid method.
    Kobayashi K; Kodama T; Takahira H
    Phys Med Biol; 2011 Oct; 56(19):6421-40. PubMed ID: 21918295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Second generation extracorporeal shock wave lithotripsy for treatment of urolithiasis.
    Tanikawa K; Nishizawa K; Okada K; Matsushita K; Kawamura N
    Tokai J Exp Clin Med; 1988 Jun; 13(2):121-7. PubMed ID: 3074523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracorporeal shock wave lithotripsy is effective in treating single melamine induced urolithiasis in infants and young children.
    Jia J; Shen X; Wang L; Zhang T; Xu M; Fang X; Xu G; Qian C; Wu Y; Geng H
    J Urol; 2013 Apr; 189(4):1498-502. PubMed ID: 23201375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.
    Cleveland RO; Sapozhnikov OA
    J Acoust Soc Am; 2005 Oct; 118(4):2667-76. PubMed ID: 16266186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of stone damage caused by different modes of shock wave generation.
    Chuong CJ; Zhong P; Preminger GM
    J Urol; 1992 Jul; 148(1):200-5. PubMed ID: 1613869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking kidney stones in a homogeneous medium using a trilateration approach.
    Shoar K; Turney BW; Cleveland RO
    J Acoust Soc Am; 2017 Dec; 142(6):3715. PubMed ID: 29289106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Extracorporeal shock wave lithotripsy using Dornier modified HM3 lithotripter comparison with the results by Dornier HM3 lithotripter].
    Sugiyama T; Itho M; Katho N; Sahashi M; Watanabe J; Yamada S; Kamihira O; Mizutani K; Ono Y
    Nihon Hinyokika Gakkai Zasshi; 1991 Mar; 82(3):462-6. PubMed ID: 2072608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Extracorporeal lithotripsy using the HM3 Dornier lithotriptor and the modified HM3 lithotriptor].
    Zanetti G; Montanari E; Mazza L; Ceresoli A; Mandressi A; Pisani E
    Arch Ital Urol Nefrol Androl; 1989 Dec; 61(4):367-72. PubMed ID: 2532400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of lithotripsy and its side effects.
    Lingeman JE; Woods J; Toth PD; Evan AP; McAteer JA
    J Urol; 1989 Mar; 141(3 Pt 2):793-7. PubMed ID: 2645438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimal static excess pressure minimises the effect of extracorporeal shock waves on cells and reduces it on gallstones.
    Delius M
    Ultrasound Med Biol; 1997; 23(4):611-7. PubMed ID: 9232770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A low or high BMI is a risk factor for renal hematoma after extracorporeal shock wave lithotripsy for kidney stones.
    Nussberger F; Roth B; Metzger T; Kiss B; Thalmann GN; Seiler R
    Urolithiasis; 2017 Jun; 45(3):317-321. PubMed ID: 27576325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does the rate of extracorporeal shock wave delivery affect stone fragmentation?
    Greenstein A; Matzkin H
    Urology; 1999 Sep; 54(3):430-2. PubMed ID: 10475348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Results of extracorporeal shock wave lithotripsy in young children.
    Mosaad A; El-Salamouni T
    J Lithotr Stone Dis; 1991 Apr; 3(2):157-61. PubMed ID: 10149156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation.
    Canseco G; de Icaza-Herrera M; Fernández F; Loske AM
    Ultrasonics; 2011 Oct; 51(7):803-10. PubMed ID: 21459398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.