BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12175770)

  • 41. Calorimetric investigation of the NABH4-modified bacteriorhodopsin in purple membrane from Halobacterium halobium.
    Shnyrov VL
    Biochem Mol Biol Int; 1994 Sep; 34(2):281-6. PubMed ID: 7849638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.
    Yamashita H; Inoue K; Shibata M; Uchihashi T; Sasaki J; Kandori H; Ando T
    J Struct Biol; 2013 Oct; 184(1):2-11. PubMed ID: 23462099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nature of the chromophore binding site of bacteriorhodopsin: the potential role of Arg82 as a principal counterion.
    Kusnetzow A; Singh DL; Martin CH; Barani IJ; Birge RR
    Biophys J; 1999 May; 76(5):2370-89. PubMed ID: 10233056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemical and functional studies on the importance of purple membrane lipids in bacteriorhodopsin photocycle behavior.
    Dracheva S; Bose S; Hendler RW
    FEBS Lett; 1996 Mar; 382(1-2):209-12. PubMed ID: 8612754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanism of light-dependent proton translocation by bacteriorhodopsin.
    Krebs MP; Khorana HG
    J Bacteriol; 1993 Mar; 175(6):1555-60. PubMed ID: 8383660
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films.
    Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D
    Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic holography in bacteriorhodopsin/gelatin films: effects of light-dark adaptation at different humidity.
    Korchemskaya E; Burykin N; Bugaychuk S; Maksymova O; Ebrey T; Balashov S
    Photochem Photobiol; 2007; 83(2):403-8. PubMed ID: 17576349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reconstitution of bacteriorhodopsin into cyclic lipid vesicles.
    Shibakami M; Tsuihiji H; Miyoshi S; Nakamura M; Goto R; Mitaku S; Sonoyama M
    Biosci Biotechnol Biochem; 2008 Jun; 72(6):1623-5. PubMed ID: 18540084
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress.
    Kalenov SV; Baurina MM; Skladnev DA; Kuznetsov AY
    J Biotechnol; 2016 Sep; 233():211-8. PubMed ID: 27449487
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bacteriorhodopsin. Correspondence of the photocycle and electrogenesis with sites of the molecule.
    Khitrina LV; Ksenofontov AL
    Biochemistry (Mosc); 2004 Dec; 69(12):1407-9. PubMed ID: 15627399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutagenic analysis of membrane protein functional mechanisms: bacteriorhodopsin as a model example.
    Turner GJ
    Methods Cell Biol; 2008; 84():479-515. PubMed ID: 17964941
    [No Abstract]   [Full Text] [Related]  

  • 55. Bleaching of bacteriorhodopsin by continuous light.
    Dancsházy Z; Tokaji Z; Dér A
    FEBS Lett; 1999 Apr; 450(1-2):154-7. PubMed ID: 10350076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Light-induced reorientation in the purple membrane.
    Wan C; Qian J; Johnson CK
    Biophys J; 1993 Aug; 65(2):927-38. PubMed ID: 8218916
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin.
    Váró G; Zimányi L; Chang M; Ni B; Needleman R; Lanyi JK
    Biophys J; 1992 Mar; 61(3):820-6. PubMed ID: 1504253
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-throughput screening of bacteriorhodopsin mutants in whole cell pastes.
    Martinez LC; Turner GJ
    Biochim Biophys Acta; 2002 Aug; 1564(1):91-8. PubMed ID: 12101000
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partial dehydration of the retinal binding pocket and proof for photochemical deprotonation of the retinal Schiff base in bicelle bacteriorhodopsin crystals.
    Sanii LS; El-Sayed MA
    Photochem Photobiol; 2005; 81(6):1356-60. PubMed ID: 16097857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integration of optical protein with electronics for bio-nanosensors.
    Anton C; Walczak K; Lueking D; Friedrich C
    J Nanosci Nanotechnol; 2010 Sep; 10(9):6104-9. PubMed ID: 21133156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.