These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 12175818)
1. Activation of muscle satellite cells in single-fiber cultures. Anderson J; Pilipowicz O Nitric Oxide; 2002 Aug; 7(1):36-41. PubMed ID: 12175818 [TBL] [Abstract][Full Text] [Related]
2. Correlated NOS-Imu and myf5 expression by satellite cells in mdx mouse muscle regeneration during NOS manipulation and deflazacort treatment. Anderson JE; Vargas C Neuromuscul Disord; 2003 Jun; 13(5):388-96. PubMed ID: 12798794 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Wozniak AC; Anderson JE Dev Dyn; 2007 Jan; 236(1):240-50. PubMed ID: 17117435 [TBL] [Abstract][Full Text] [Related]
4. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Tatsumi R; Hattori A; Ikeuchi Y; Anderson JE; Allen RE Mol Biol Cell; 2002 Aug; 13(8):2909-18. PubMed ID: 12181355 [TBL] [Abstract][Full Text] [Related]
5. Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). Zhang H; Anderson JE J Exp Biol; 2014 Jun; 217(Pt 11):1910-7. PubMed ID: 24577448 [TBL] [Abstract][Full Text] [Related]
6. A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Tatsumi R; Wuollet AL; Tabata K; Nishimura S; Tabata S; Mizunoya W; Ikeuchi Y; Allen RE Am J Physiol Cell Physiol; 2009 Apr; 296(4):C922-9. PubMed ID: 19158401 [TBL] [Abstract][Full Text] [Related]
7. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Tatsumi R; Liu X; Pulido A; Morales M; Sakata T; Dial S; Hattori A; Ikeuchi Y; Allen RE Am J Physiol Cell Physiol; 2006 Jun; 290(6):C1487-94. PubMed ID: 16684931 [TBL] [Abstract][Full Text] [Related]
8. Basal, but not overload-induced, myonuclear addition is attenuated by NG-nitro-L-arginine methyl ester (L-NAME) administration. Gordon SE; Westerkamp CM; Savage KJ; Hickner RC; George SC; Fick CA; McCormick KM Can J Physiol Pharmacol; 2007 Jun; 85(6):646-51. PubMed ID: 17823627 [TBL] [Abstract][Full Text] [Related]
9. Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Tatsumi R Anim Sci J; 2010 Feb; 81(1):11-20. PubMed ID: 20163667 [TBL] [Abstract][Full Text] [Related]
11. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Hara M; Tabata K; Suzuki T; Do MK; Mizunoya W; Nakamura M; Nishimura S; Tabata S; Ikeuchi Y; Sunagawa K; Anderson JE; Allen RE; Tatsumi R Am J Physiol Cell Physiol; 2012 Jun; 302(12):C1741-50. PubMed ID: 22460715 [TBL] [Abstract][Full Text] [Related]
12. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. Yamada M; Tatsumi R; Yamanouchi K; Hosoyama T; Shiratsuchi S; Sato A; Mizunoya W; Ikeuchi Y; Furuse M; Allen RE Am J Physiol Cell Physiol; 2010 Mar; 298(3):C465-76. PubMed ID: 20007454 [TBL] [Abstract][Full Text] [Related]
19. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Anderson JE Mol Biol Cell; 2000 May; 11(5):1859-74. PubMed ID: 10793157 [TBL] [Abstract][Full Text] [Related]
20. The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. Volonte D; Liu Y; Galbiati F FASEB J; 2005 Feb; 19(2):237-9. PubMed ID: 15545301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]