These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 12176292)
1. Enhanced drug dissolution using evaporative precipitation into aqueous solution. Sarkari M; Brown J; Chen X; Swinnea S; Williams RO; Johnston KP Int J Pharm; 2002 Aug; 243(1-2):17-31. PubMed ID: 12176292 [TBL] [Abstract][Full Text] [Related]
2. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Chen X; Young TJ; Sarkari M; Williams RO; Johnston KP Int J Pharm; 2002 Aug; 242(1-2):3-14. PubMed ID: 12176220 [TBL] [Abstract][Full Text] [Related]
3. Influence of formulation and processing variables on properties of itraconazole nanoparticles made by advanced evaporative precipitation into aqueous solution. Bosselmann S; Nagao M; Chow KT; Williams RO AAPS PharmSciTech; 2012 Sep; 13(3):949-60. PubMed ID: 22752680 [TBL] [Abstract][Full Text] [Related]
4. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. Sinswat P; Gao X; Yacaman MJ; Williams RO; Johnston KP Int J Pharm; 2005 Sep; 302(1-2):113-24. PubMed ID: 16109466 [TBL] [Abstract][Full Text] [Related]
5. Comparison of powder produced by evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies using novel Z-contrast STEM and complimentary techniques. Vaughn JM; Gao X; Yacaman MJ; Johnston KP; Williams RO Eur J Pharm Biopharm; 2005 May; 60(1):81-9. PubMed ID: 15848060 [TBL] [Abstract][Full Text] [Related]
6. Cryogenic liquids, nanoparticles, and microencapsulation. Purvis T; Vaughn JM; Rogers TL; Chen X; Overhoff KA; Sinswat P; Hu J; McConville JT; Johnston KP; Williams RO Int J Pharm; 2006 Oct; 324(1):43-50. PubMed ID: 16814968 [TBL] [Abstract][Full Text] [Related]
7. Supersaturation produces high bioavailability of amorphous danazol particles formed by evaporative precipitation into aqueous solution and spray freezing into liquid technologies. Vaughn JM; McConville JT; Crisp MT; Johnston KP; Williams RO Drug Dev Ind Pharm; 2006 Jun; 32(5):559-67. PubMed ID: 16720411 [TBL] [Abstract][Full Text] [Related]
8. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Rasenack N; Hartenhauer H; Müller BW Int J Pharm; 2003 Mar; 254(2):137-45. PubMed ID: 12623189 [TBL] [Abstract][Full Text] [Related]
9. Rapid dissolution of high-potency danazol particles produced by evaporative precipitation into aqueous solution. Chen X; Vaughn JM; Yacaman MJ; Williams RO; Johnston KP J Pharm Sci; 2004 Jul; 93(7):1867-78. PubMed ID: 15176074 [TBL] [Abstract][Full Text] [Related]
10. Enhanced aqueous dissolution of a poorly water soluble drug by novel particle engineering technology: spray-freezing into liquid with atmospheric freeze-drying. Rogers TL; Nelsen AC; Sarkari M; Young TJ; Johnston KP; Williams RO Pharm Res; 2003 Mar; 20(3):485-93. PubMed ID: 12669973 [TBL] [Abstract][Full Text] [Related]
11. Poorly water-soluble drug nanoparticles via solvent evaporation in water-soluble porous polymers. Roberts AD; Zhang H Int J Pharm; 2013 Apr; 447(1-2):241-50. PubMed ID: 23499755 [TBL] [Abstract][Full Text] [Related]
12. Spray Drying as a Reliable Route to Produce Metastable Carbamazepine Form IV. Halliwell RA; Bhardwaj RM; Brown CJ; Briggs NEB; Dunn J; Robertson J; Nordon A; Florence AJ J Pharm Sci; 2017 Jul; 106(7):1874-1880. PubMed ID: 28431966 [TBL] [Abstract][Full Text] [Related]
13. Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Overhoff KA; Engstrom JD; Chen B; Scherzer BD; Milner TE; Johnston KP; Williams RO Eur J Pharm Biopharm; 2007 Jan; 65(1):57-67. PubMed ID: 16987642 [TBL] [Abstract][Full Text] [Related]
14. Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying. Hu J; Ng WK; Dong Y; Shen S; Tan RB Int J Pharm; 2011 Feb; 404(1-2):198-204. PubMed ID: 21056643 [TBL] [Abstract][Full Text] [Related]
15. Hot-melt extrusion for enhanced delivery of drug particles. Miller DA; McConville JT; Yang W; Williams RO; McGinity JW J Pharm Sci; 2007 Feb; 96(2):361-76. PubMed ID: 17075869 [TBL] [Abstract][Full Text] [Related]
16. Enhanced dissolution of oxcarbazepine microcrystals using a static mixer process. Douroumis D; Fahr A Colloids Surf B Biointerfaces; 2007 Oct; 59(2):208-14. PubMed ID: 17588726 [TBL] [Abstract][Full Text] [Related]
17. Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: organic solvent versus organic/aqueous co-solvent systems. Hu J; Johnston KP; Williams RO Eur J Pharm Sci; 2003 Nov; 20(3):295-303. PubMed ID: 14592695 [TBL] [Abstract][Full Text] [Related]
18. Particle characterization of poorly water-soluble drugs using a spray freeze drying technique. Kondo M; Niwa T; Okamoto H; Danjo K Chem Pharm Bull (Tokyo); 2009 Jul; 57(7):657-62. PubMed ID: 19571408 [TBL] [Abstract][Full Text] [Related]
19. Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Rogers TL; Gillespie IB; Hitt JE; Fransen KL; Crowl CA; Tucker CJ; Kupperblatt GB; Becker JN; Wilson DL; Todd C; Broomall CF; Evans JC; Elder EJ Pharm Res; 2004 Nov; 21(11):2048-57. PubMed ID: 15587927 [TBL] [Abstract][Full Text] [Related]
20. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs. Niwa T; Shimabara H; Danjo K Chem Pharm Bull (Tokyo); 2010 Feb; 58(2):195-200. PubMed ID: 20118578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]