BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 12176324)

  • 1. The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration.
    Tsai HH; Frost E; To V; Robinson S; Ffrench-Constant C; Geertman R; Ransohoff RM; Miller RH
    Cell; 2002 Aug; 110(3):373-83. PubMed ID: 12176324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemokine growth-regulated oncogene-alpha promotes spinal cord oligodendrocyte precursor proliferation.
    Robinson S; Tani M; Strieter RM; Ransohoff RM; Miller RH
    J Neurosci; 1998 Dec; 18(24):10457-63. PubMed ID: 9852583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant.
    Wu Q; Miller RH; Ransohoff RM; Robinson S; Bu J; Nishiyama A
    J Neurosci; 2000 Apr; 20(7):2609-17. PubMed ID: 10729341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemokine GRO1 and the spatial and temporal regulation of oligodendrocyte precursor proliferation.
    Robinson S; Franic LA
    Dev Neurosci; 2001; 23(4-5):338-45. PubMed ID: 11756749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions.
    Filipovic R; Jakovcevski I; Zecevic N
    Dev Neurosci; 2003; 25(2-4):279-90. PubMed ID: 12966224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors.
    Dziembowska M; Tham TN; Lau P; Vitry S; Lazarini F; Dubois-Dalcq M
    Glia; 2005 May; 50(3):258-69. PubMed ID: 15756692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2.
    Padovani-Claudio DA; Liu L; Ransohoff RM; Miller RH
    Glia; 2006 Oct; 54(5):471-83. PubMed ID: 16886211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation and migration of glial precursor cells in the developing rat spinal cord.
    McMahon SS; McDermott KW
    J Neurocytol; 2001; 30(9-10):821-8. PubMed ID: 12165672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular and intracellular regulation of oligodendrocyte development: roles of Sonic hedgehog and expression of E proteins.
    Sussman CR; Davies JE; Miller RH
    Glia; 2002 Oct; 40(1):55-64. PubMed ID: 12237843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2.
    Kershaw MH; Wang G; Westwood JA; Pachynski RK; Tiffany HL; Marincola FM; Wang E; Young HA; Murphy PM; Hwu P
    Hum Gene Ther; 2002 Nov; 13(16):1971-80. PubMed ID: 12427307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro.
    Calaora V; Rogister B; Bismuth K; Murray K; Brandt H; Leprince P; Marchionni M; Dubois-Dalcq M
    J Neurosci; 2001 Jul; 21(13):4740-51. PubMed ID: 11425901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of oligodendrocyte development.
    Orentas DM; Miller RH
    Mol Neurobiol; 1998 Dec; 18(3):247-59. PubMed ID: 10206471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CXCL1 regulation of oligodendrocyte progenitor cell migration is independent of calcium signaling.
    Vora P; Pillai P; Mustapha J; Kowal C; Shaffer S; Bose R; Namaka M; Frost EE
    Exp Neurol; 2012 Aug; 236(2):259-67. PubMed ID: 22554866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord oligodendrocytes develop from a limited number of migratory highly proliferative precursors.
    Miller RH; Payne J; Milner L; Zhang H; Orentas DM
    J Neurosci Res; 1997 Oct; 50(2):157-68. PubMed ID: 9373026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function.
    Gregori N; Pröschel C; Noble M; Mayer-Pröschel M
    J Neurosci; 2002 Jan; 22(1):248-56. PubMed ID: 11756508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of oligodendrocyte differentiation: a role for retinoic acid in the spinal cord.
    Noll E; Miller RH
    Development; 1994 Mar; 120(3):649-60. PubMed ID: 8162861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective expression of Nkx-2.2 transcription factor in chicken oligodendrocyte progenitors and implications for the embryonic origin of oligodendrocytes.
    Xu X; Cai J; Fu H; Wu R; Qi Y; Modderman G; Liu R; Qiu M
    Mol Cell Neurosci; 2000 Dec; 16(6):740-53. PubMed ID: 11124894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord.
    Noll E; Miller RH
    Development; 1993 Jun; 118(2):563-73. PubMed ID: 8223279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord.
    Tsai HH; Macklin WB; Miller RH
    J Neurosci Res; 2009 Nov; 87(15):3320-30. PubMed ID: 19301427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo analysis of oligodendrocyte lineage development in postnatal FGF2 null mice.
    Murtie JC; Zhou YX; Le TQ; Armstrong RC
    Glia; 2005 Mar; 49(4):542-54. PubMed ID: 15578654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.