These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12176388)

  • 1. X-ray crystal structure of Staphylococcus aureus FemA.
    Benson TE; Prince DB; Mutchler VT; Curry KA; Ho AM; Sarver RW; Hagadorn JC; Choi GH; Garlick RL
    Structure; 2002 Aug; 10(8):1107-15. PubMed ID: 12176388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation.
    Ehlert K; Schröder W; Labischinski H
    J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus.
    Schneider T; Senn MM; Berger-Bächi B; Tossi A; Sahl HG; Wiedemann I
    Mol Microbiol; 2004 Jul; 53(2):675-85. PubMed ID: 15228543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex.
    Ruane KM; Lloyd AJ; Fülöp V; Dowson CG; Barreteau H; Boniface A; Dementin S; Blanot D; Mengin-Lecreulx D; Gobec S; Dessen A; Roper DI
    J Biol Chem; 2013 Nov; 288(46):33439-48. PubMed ID: 24064214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage.
    Büttner FM; Zoll S; Nega M; Götz F; Stehle T
    J Biol Chem; 2014 Apr; 289(16):11083-11094. PubMed ID: 24599952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a bacterial two-hybrid system for the analysis of protein-protein interactions between FemABX family proteins.
    Rohrer S; Berger-Bächi B
    Microbiology (Reading); 2003 Oct; 149(Pt 10):2733-2738. PubMed ID: 14523106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus.
    Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H
    J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB).
    Benson TE; Harris MS; Choi GH; Cialdella JI; Herberg JT; Martin JP; Baldwin ET
    Biochemistry; 2001 Feb; 40(8):2340-50. PubMed ID: 11327854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation.
    Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B
    FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partition of tRNAGly isoacceptors between protein and cell-wall peptidoglycan synthesis in Staphylococcus aureus.
    Rietmeyer L; Fix-Boulier N; Le Fournis C; Iannazzo L; Kitoun C; Patin D; Mengin-Lecreulx D; Ethève-Quelquejeu M; Arthur M; Fonvielle M
    Nucleic Acids Res; 2021 Jan; 49(2):684-699. PubMed ID: 33367813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional characterization of Staphylococcus aureus dihydrodipicolinate synthase.
    Girish TS; Sharma E; Gopal B
    FEBS Lett; 2008 Aug; 582(19):2923-30. PubMed ID: 18671976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of three additional femAB-like open reading frames in Staphylococcus aureus.
    Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B
    FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity.
    Monteiro JM; Covas G; Rausch D; Filipe SR; Schneider T; Sahl HG; Pinho MG
    Sci Rep; 2019 Mar; 9(1):5010. PubMed ID: 30899062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges.
    Lu JZ; Fujiwara T; Komatsuzawa H; Sugai M; Sakon J
    J Biol Chem; 2006 Jan; 281(1):549-58. PubMed ID: 16257954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FmhA and FmhC of
    Willing S; Dyer E; Schneewind O; Missiakas D
    J Biol Chem; 2020 Sep; 295(39):13664-13676. PubMed ID: 32759309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation.
    Rohrer S; Ehlert K; Tschierske M; Labischinski H; Berger-Bächi B
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9351-6. PubMed ID: 10430946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target?
    Kopp U; Roos M; Wecke J; Labischinski H
    Microb Drug Resist; 1996; 2(1):29-41. PubMed ID: 9158720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall.
    Ton-That H; Labischinski H; Berger-Bächi B; Schneewind O
    J Biol Chem; 1998 Oct; 273(44):29143-9. PubMed ID: 9786923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. REDOR constraints on the peptidoglycan lattice architecture of Staphylococcus aureus and its FemA mutant.
    Singh M; Kim SJ; Sharif S; Preobrazhenskaya M; Schaefer J
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):363-8. PubMed ID: 24990251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of femA from Staphylococcus hominis and Staphylococcus saprophyticus, and femA-based discrimination of staphylococcal species.
    Vannuffel P; Heusterspreute M; Bouyer M; Vandercam B; Philippe M; Gala JL
    Res Microbiol; 1999 Mar; 150(2):129-41. PubMed ID: 10209768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.