These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12176998)

  • 1. Network of interactions of a novel plant-specific Arg/Ser-rich protein, atRSZ33, with atSC35-like splicing factors.
    Lopato S; Forstner C; Kalyna M; Hilscher J; Langhammer U; Indrapichate K; Lorković ZJ; Barta A
    J Biol Chem; 2002 Oct; 277(42):39989-98. PubMed ID: 12176998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of Arabidopsis RS domain containing cyclophilins with SR proteins and U1 and U11 small nuclear ribonucleoprotein-specific proteins suggest their involvement in pre-mRNA Splicing.
    Lorkovic ZJ; Lopato S; Pexa M; Lehner R; Barta A
    J Biol Chem; 2004 Aug; 279(32):33890-8. PubMed ID: 15166240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein.
    Golovkin M; Reddy AS
    J Biol Chem; 1999 Dec; 274(51):36428-38. PubMed ID: 10593939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family.
    Cavaloc Y; Popielarz M; Fuchs JP; Gattoni R; Stévenin J
    EMBO J; 1994 Jun; 13(11):2639-49. PubMed ID: 8013463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities.
    Lopato S; Gattoni R; Fabini G; Stevenin J; Barta A
    Plant Mol Biol; 1999 Mar; 39(4):761-73. PubMed ID: 10350090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ectopic expression of atRSZ33 reveals its function in splicing and causes pleiotropic changes in development.
    Kalyna M; Lopato S; Barta A
    Mol Biol Cell; 2003 Sep; 14(9):3565-77. PubMed ID: 12972547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.
    Yan Q; Xia X; Sun Z; Fang Y
    PLoS Genet; 2017 Mar; 13(3):e1006663. PubMed ID: 28273088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of a novel serine-arginine-rich splicing regulatory protein.
    Barnard DC; Patton JG
    Mol Cell Biol; 2000 May; 20(9):3049-57. PubMed ID: 10757789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The plant U1 small nuclear ribonucleoprotein particle 70K protein interacts with two novel serine/arginine-rich proteins.
    Golovkin M; Reddy AS
    Plant Cell; 1998 Oct; 10(10):1637-48. PubMed ID: 9761791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes.
    Lopato S; Kalyna M; Dorner S; Kobayashi R; Krainer AR; Barta A
    Genes Dev; 1999 Apr; 13(8):987-1001. PubMed ID: 10215626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
    Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS
    Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants.
    Iida K; Go M
    Mol Biol Evol; 2006 May; 23(5):1085-94. PubMed ID: 16520337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.
    Lopato S; Waigmann E; Barta A
    Plant Cell; 1996 Dec; 8(12):2255-64. PubMed ID: 8989882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The second RNA-binding domain of the human splicing factor ASF/SF2 is the critical domain controlling adenovirus E1A alternative 5'-splice site selection.
    Dauksaite V; Akusjärvi G
    Biochem J; 2004 Jul; 381(Pt 2):343-50. PubMed ID: 15068396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing.
    Maita H; Kitaura H; Ariga H; Iguchi-Ariga SM
    Exp Cell Res; 2005 Feb; 303(2):375-87. PubMed ID: 15652350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF.
    Lazar G; Schaal T; Maniatis T; Goodman HM
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7672-6. PubMed ID: 7644475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sip1, a novel RS domain-containing protein essential for pre-mRNA splicing.
    Zhang WJ; Wu JY
    Mol Cell Biol; 1998 Feb; 18(2):676-84. PubMed ID: 9447963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome analysis: RNA recognition motif (RRM) and K homology (KH) domain RNA-binding proteins from the flowering plant Arabidopsis thaliana.
    Lorković ZJ; Barta A
    Nucleic Acids Res; 2002 Feb; 30(3):623-35. PubMed ID: 11809873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing factor SF1 from Drosophila and Caenorhabditis: presence of an N-terminal RS domain and requirement for viability.
    Mazroui R; Puoti A; Krämer A
    RNA; 1999 Dec; 5(12):1615-31. PubMed ID: 10606272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of a complementary DNA that encodes the mammalian splicing factor SC35.
    Fu XD; Maniatis T
    Science; 1992 Apr; 256(5056):535-8. PubMed ID: 1373910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.