These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 12177181)

  • 41. Maturation of odor representation in the honeybee antennal lobe.
    Wang S; Zhang S; Sato K; Srinivasan MV
    J Insect Physiol; 2005 Nov; 51(11):1244-54. PubMed ID: 16183074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Odor discrimination and odor quality perception in rats with disruption of connections between the olfactory epithelium and olfactory bulbs.
    Slotnick B; Bodyak N
    J Neurosci; 2002 May; 22(10):4205-16. PubMed ID: 12019338
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Odor representation and discrimination in mitral/tufted cells of the rat olfactory bulb.
    Motokizawa F
    Exp Brain Res; 1996 Nov; 112(1):24-34. PubMed ID: 8951403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Concanavalin A application to the olfactory epithelium reveals different sensory neuron populations for the odour pair D- and L-carvone.
    Kirner A; Deutsch S; Weiler E; Polak EH; Apfelbach R
    Behav Brain Res; 2003 Jan; 138(2):201-6. PubMed ID: 12527450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sniffing shapes the dynamics of olfactory bulb gamma oscillations in awake behaving rats.
    Rosero MA; Aylwin ML
    Eur J Neurosci; 2011 Sep; 34(5):787-99. PubMed ID: 21819462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enantioselectivity of odor perception in honeybees (Apis mellifera carnica).
    Laska M; Galizia CG
    Behav Neurosci; 2001 Jun; 115(3):632-9. PubMed ID: 11439452
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ontogenesis of the functional activity of rat olfactory bulb: autoradiographic study with the 2-deoxyglucose method.
    Astic L; Saucier D
    Brain Res; 1981 Sep; 254(2):243-56. PubMed ID: 7272779
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes.
    Sandoz JC; Galizia CG; Menzel R
    Neuroscience; 2003; 120(4):1137-48. PubMed ID: 12927218
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Noradrenergic modulation in the olfactory bulb influences spontaneous and reward-motivated discrimination, but not the formation of habituation memory.
    Mandairon N; Peace S; Karnow A; Kim J; Ennis M; Linster C
    Eur J Neurosci; 2008 Mar; 27(5):1210-9. PubMed ID: 18364038
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mapping of Learned Odor-Induced Motivated Behaviors in the Mouse Olfactory Tubercle.
    Murata K; Kanno M; Ieki N; Mori K; Yamaguchi M
    J Neurosci; 2015 Jul; 35(29):10581-99. PubMed ID: 26203152
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of centrifugal projections to the olfactory bulb in olfactory processing.
    Kiselycznyk CL; Zhang S; Linster C
    Learn Mem; 2006; 13(5):575-9. PubMed ID: 16980549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice.
    Hellier JL; Arevalo NL; Smith L; Xiong KN; Restrepo D
    PLoS One; 2012; 7(4):e35251. PubMed ID: 22514723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical imaging of odor preference memory in the rat olfactory bulb.
    Yuan Q; Harley CW; McLean JH; Knöpfel T
    J Neurophysiol; 2002 Jun; 87(6):3156-9. PubMed ID: 12037216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting odorant quality perceptions from multidimensional scaling of olfactory bulb glomerular activity patterns.
    Youngentob SL; Johnson BA; Leon M; Sheehe PR; Kent PF
    Behav Neurosci; 2006 Dec; 120(6):1337-45. PubMed ID: 17201479
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions between odorant functional group and hydrocarbon structure influence activity in glomerular response modules in the rat olfactory bulb.
    Johnson BA; Farahbod H; Leon M
    J Comp Neurol; 2005 Mar; 483(2):205-16. PubMed ID: 15678471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Odorant threshold following methyl bromide-induced lesions of the olfactory epithelium.
    Youngentob SL; Schwob JE; Sheehe PR; Youngentob LM
    Physiol Behav; 1997 Dec; 62(6):1241-52. PubMed ID: 9383109
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Odor-induced metabolic activity in the olfactory bulb of rats trained to detect propionic acid vapor.
    Slotnick BM; Panhuber H; Bell GA; Laing DG
    Brain Res; 1989 Oct; 500(1-2):161-8. PubMed ID: 2605489
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system.
    Lin W; Arellano J; Slotnick B; Restrepo D
    J Neurosci; 2004 Apr; 24(14):3703-10. PubMed ID: 15071119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of mice in discrimination of liquor odors: behavioral evidence for olfactory attention.
    Takiguchi N; Okuhara K; Kuroda A; Kato J; Ohtake H
    Chem Senses; 2008 Mar; 33(3):283-90. PubMed ID: 18178544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prolonged stimulus exposure reveals prolonged neurobehavioral response patterns.
    Johnson BA; Woo CC; Zeng Y; Xu Z; Hingco EE; Ong J; Leon M
    J Comp Neurol; 2010 May; 518(10):1617-29. PubMed ID: 20232477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.