These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12177299)

  • 41. Intracellular expression and function of antisense catalytic RNAs.
    Castanotto D; Scherr M; Rossi JJ
    Methods Enzymol; 2000; 313():401-20. PubMed ID: 10595369
    [No Abstract]   [Full Text] [Related]  

  • 42. A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells.
    Esnault C; Casella JF; Heidmann T
    Nucleic Acids Res; 2002 Jun; 30(11):e49. PubMed ID: 12034850
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A self-splicing group I intron in the nuclear pre-rRNA of the green alga, Ankistrodesmus stipitatus.
    Dávila-Aponte JA; Huss VA; Sogin ML; Cech TR
    Nucleic Acids Res; 1991 Aug; 19(16):4429-36. PubMed ID: 1886767
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function.
    Lukavsky PJ; Otto GA; Lancaster AM; Sarnow P; Puglisi JD
    Nat Struct Biol; 2000 Dec; 7(12):1105-10. PubMed ID: 11101890
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The tRNATyr-isoacceptors and their genes in the ciliate Tetrahymena thermophila: cytoplasmic tRNATyr has a QPsiA anticodon and is coded by multiple intron-containing genes.
    Junker V; Teichmann T; Hekele A; Fingerhut C; Beier H
    Nucleic Acids Res; 1997 Nov; 25(21):4194-200. PubMed ID: 9336446
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A multifunctional expression vector for an anti-HIV-1 ribozyme that produces a 5'- and 3'-trimmed trans-acting ribozyme, targeted against HIV-1 RNA, and cis-acting ribozymes that are designed to bind to and thereby sequester trans-activator proteins such as Tat and Rev.
    Yuyama N; Ohkawa J; Koguma T; Shirai M; Taira K
    Nucleic Acids Res; 1994 Nov; 22(23):5060-7. PubMed ID: 7800500
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Internal symmetry of the mirror type in the primary structure of ribozymes].
    Shpakov AO
    Tsitologiia; 2002; 44(6):561-9. PubMed ID: 12236100
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular cloning and characterization of a TAR-binding nuclear factor from T cells.
    Reddy TR; Suhasini M; Rappaport J; Looney DJ; Kraus G; Wong-Staal F
    AIDS Res Hum Retroviruses; 1995 Jun; 11(6):663-9. PubMed ID: 7576925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of RNA secondary structure, including pseudoknotting, by computer simulation.
    Abrahams JP; van den Berg M; van Batenburg E; Pleij C
    Nucleic Acids Res; 1990 May; 18(10):3035-44. PubMed ID: 1693421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Similarity of the 5' and 3'-TAR secondary structures in HIV-1.
    Wang P; Rouyez MC; Ducamp S; Saragosti S; Ventura M
    Biochem Biophys Res Commun; 1993 Sep; 195(2):565-73. PubMed ID: 8373397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic analysis of a poliovirus/hepatitis C virus chimera: new structure for domain II of the internal ribosomal entry site of hepatitis C virus.
    Zhao WD; Wimmer E
    J Virol; 2001 Apr; 75(8):3719-30. PubMed ID: 11264361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural features in TAR RNA of human and simian immunodeficiency viruses: a phylogenetic analysis.
    Berkhout B
    Nucleic Acids Res; 1992 Jan; 20(1):27-31. PubMed ID: 1738599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mycoplasma fermentans simplifies our view of the catalytic core of ribonuclease P RNA.
    Siegel RW; Banta AB; Haas ES; Brown JW; Pace NR
    RNA; 1996 May; 2(5):452-62. PubMed ID: 8665412
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial RNase P: the RNA family grows.
    Martin NC; Lang BF
    Nucleic Acids Symp Ser; 1997; (36):42-4. PubMed ID: 9478201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovering common stem-loop motifs in unaligned RNA sequences.
    Gorodkin J; Stricklin SL; Stormo GD
    Nucleic Acids Res; 2001 May; 29(10):2135-44. PubMed ID: 11353083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finding the common structure shared by two homologous RNAs.
    Perriquet O; Touzet H; Dauchet M
    Bioinformatics; 2003 Jan; 19(1):108-16. PubMed ID: 12499300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and characterization of metal ion binding sites in RNA.
    Gonzalez RL; Tinoco I
    Methods Enzymol; 2001; 338():421-43. PubMed ID: 11460561
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.