These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 12177429)
1. Toward predicting protein topology: an approach to identifying beta hairpins. de la Cruz X; Hutchinson EG; Shepherd A; Thornton JM Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11157-62. PubMed ID: 12177429 [TBL] [Abstract][Full Text] [Related]
2. A neural network method for prediction of beta-turn types in proteins using evolutionary information. Kaur H; Raghava GP Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798 [TBL] [Abstract][Full Text] [Related]
3. Strand-loop-strand motifs: prediction of hairpins and diverging turns in proteins. Kuhn M; Meiler J; Baker D Proteins; 2004 Feb; 54(2):282-8. PubMed ID: 14696190 [TBL] [Abstract][Full Text] [Related]
4. Combining prediction of secondary structure and solvent accessibility in proteins. Adamczak R; Porollo A; Meller J Proteins; 2005 May; 59(3):467-75. PubMed ID: 15768403 [TBL] [Abstract][Full Text] [Related]
5. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Kaur H; Raghava GP Protein Sci; 2003 May; 12(5):923-9. PubMed ID: 12717015 [TBL] [Abstract][Full Text] [Related]
6. Protein secondary structure prediction using nearest-neighbor methods. Yi TM; Lander ES J Mol Biol; 1993 Aug; 232(4):1117-29. PubMed ID: 8371270 [TBL] [Abstract][Full Text] [Related]
7. Amino acid propensities for secondary structures are influenced by the protein structural class. Costantini S; Colonna G; Facchiano AM Biochem Biophys Res Commun; 2006 Apr; 342(2):441-51. PubMed ID: 16487481 [TBL] [Abstract][Full Text] [Related]
9. Neural network-based prediction of transmembrane beta-strand segments in outer membrane proteins. Gromiha MM; Ahmad S; Suwa M J Comput Chem; 2004 Apr; 25(5):762-7. PubMed ID: 14978719 [TBL] [Abstract][Full Text] [Related]
10. Neural network prediction of 3(10)-helices in proteins. Pal L; Basu G Indian J Biochem Biophys; 2001; 38(1-2):107-14. PubMed ID: 11563321 [TBL] [Abstract][Full Text] [Related]
11. PROBE: a computer program employing an integrated neural network approach to protein structure prediction. Holbrook SR; Dubchak I; Kim SH Biotechniques; 1993 Jun; 14(6):984-9. PubMed ID: 8333967 [TBL] [Abstract][Full Text] [Related]
12. Prediction of protein secondary structure content using amino acid composition and evolutionary information. Lee S; Lee BC; Kim D Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074 [TBL] [Abstract][Full Text] [Related]
13. Role of evolutionary information in prediction of aromatic-backbone NH interactions in proteins. Kaur H; Raghava GP FEBS Lett; 2004 Apr; 564(1-2):47-57. PubMed ID: 15094041 [TBL] [Abstract][Full Text] [Related]
14. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks. Shepherd AJ; Gorse D; Thornton JM Proteins; 2003 Feb; 50(2):290-302. PubMed ID: 12486723 [TBL] [Abstract][Full Text] [Related]
15. High accuracy prediction of beta-turns and their types using propensities and multiple alignments. Fuchs PF; Alix AJ Proteins; 2005 Jun; 59(4):828-39. PubMed ID: 15822097 [TBL] [Abstract][Full Text] [Related]
16. gamma-Turn types prediction in proteins using the support vector machines. Jahandideh S; Sarvestani AS; Abdolmaleki P; Jahandideh M; Barfeie M J Theor Biol; 2007 Dec; 249(4):785-90. PubMed ID: 17936305 [TBL] [Abstract][Full Text] [Related]
17. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Garg A; Kaur H; Raghava GP Proteins; 2005 Nov; 61(2):318-24. PubMed ID: 16106377 [TBL] [Abstract][Full Text] [Related]
18. Learning protein secondary structure from sequential and relational data. Ceroni A; Frasconi P; Pollastri G Neural Netw; 2005 Oct; 18(8):1029-39. PubMed ID: 16182513 [TBL] [Abstract][Full Text] [Related]
19. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach. Zimmermann O; Hansmann UH J Chem Inf Model; 2008 Sep; 48(9):1903-8. PubMed ID: 18763837 [TBL] [Abstract][Full Text] [Related]
20. Mining super-secondary structure motifs from 3d protein structures: a sequence order independent approach. Aung Z; Li J Genome Inform; 2007; 19():15-26. PubMed ID: 18546501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]