These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 12177457)

  • 1. Revisiting the metal-binding chemistry of nicotianamine and 2'-deoxymugineic acid. Implications for iron nutrition in strategy II plants.
    Reichman SM; Parker DR
    Plant Physiol; 2002 Aug; 129(4):1435-8. PubMed ID: 12177457
    [No Abstract]   [Full Text] [Related]  

  • 2. A practical synthesis of the phytosiderophore 2'-deoxymugineic acid: a key to the mechanistic study of iron acquisition by graminaceous plants.
    Namba K; Murata Y; Horikawa M; Iwashita T; Kusumoto S
    Angew Chem Int Ed Engl; 2007; 46(37):7060-3. PubMed ID: 17691091
    [No Abstract]   [Full Text] [Related]  

  • 3. Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine.
    Weber G; von Wirén N; Hayen H
    Biometals; 2008 Oct; 21(5):503-13. PubMed ID: 18322653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release.
    Albrecht-Gary AM; Crumbliss AL
    Met Ions Biol Syst; 1998; 35():239-327. PubMed ID: 9444763
    [No Abstract]   [Full Text] [Related]  

  • 5. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine siderophores and microbial iron mobilization.
    Butler A
    Biometals; 2005 Aug; 18(4):369-74. PubMed ID: 16158229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CE of phytosiderophores and related metal species in plants.
    Xuan Y; Scheuermann EB; Meda AR; Jacob P; von Wirén N; Weber G
    Electrophoresis; 2007 Oct; 28(19):3507-19. PubMed ID: 17768721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints.
    Aoyama T; Kobayashi T; Takahashi M; Nagasaka S; Usuda K; Kakei Y; Ishimaru Y; Nakanishi H; Mori S; Nishizawa NK
    Plant Mol Biol; 2009 Aug; 70(6):681-92. PubMed ID: 19468840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron in evolution.
    Williams RJ
    FEBS Lett; 2012 Mar; 586(5):479-84. PubMed ID: 21704034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Zn-nicotianamine and Fe-2'-Deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.).
    Nishiyama R; Kato M; Nagata S; Yanagisawa S; Yoneyama T
    Plant Cell Physiol; 2012 Feb; 53(2):381-90. PubMed ID: 22218421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of ferric and ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus.
    Bezkorovainy A; Topouzian N; Miller-Catchpole R
    Clin Physiol Biochem; 1986; 4(2):150-8. PubMed ID: 3698473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III).
    von Wirén N; Khodr H; Hider RC
    Plant Physiol; 2000 Nov; 124(3):1149-58. PubMed ID: 11080292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading.
    Le Jean M; Schikora A; Mari S; Briat JF; Curie C
    Plant J; 2005 Dec; 44(5):769-82. PubMed ID: 16297069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron oxidation state modulates active site structure in a heme peroxidase.
    Badyal SK; Metcalfe CL; Basran J; Efimov I; Moody PC; Raven EL
    Biochemistry; 2008 Apr; 47(15):4403-9. PubMed ID: 18351739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro characterization of iron-phytosiderophore interaction with maize root plasma membranes: evidences for slow association kinetics.
    von Wirén N; Gibrat R; Briat JF
    Biochim Biophys Acta; 1998 Apr; 1371(1):143-55. PubMed ID: 9565671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemistry. How iron activates O2.
    Kovacs JA
    Science; 2003 Feb; 299(5609):1024-5. PubMed ID: 12586930
    [No Abstract]   [Full Text] [Related]  

  • 19. Ferrous ion strongly promotes the ring opening of the hydrolysis intermediates of the antioxidant cardioprotective agent dexrazoxane (ICRF-187).
    Buss JL; Hasinoff BB
    Arch Biochem Biophys; 1995 Feb; 317(1):121-7. PubMed ID: 7872773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore.
    Mies KA; Wirgau JI; Crumbliss AL
    Biometals; 2006 Apr; 19(2):115-26. PubMed ID: 16718598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.