These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 12177471)
41. Changes in the glucosinolate-myrosinase defense system in Brassica juncea cotyledons during seedling development. Wallace SK; Eigenbrode SD J Chem Ecol; 2002 Feb; 28(2):243-56. PubMed ID: 11925065 [TBL] [Abstract][Full Text] [Related]
42. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. Burow M; Markert J; Gershenzon J; Wittstock U FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417 [TBL] [Abstract][Full Text] [Related]
43. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae. Chen S; Halkier BA Protein Expr Purif; 1999 Dec; 17(3):414-20. PubMed ID: 10600460 [TBL] [Abstract][Full Text] [Related]
44. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. Weselake RJ; Shah S; Tang M; Quant PA; Snyder CL; Furukawa-Stoffer TL; Zhu W; Taylor DC; Zou J; Kumar A; Hall L; Laroche A; Rakow G; Raney P; Moloney MM; Harwood JL J Exp Bot; 2008; 59(13):3543-9. PubMed ID: 18703491 [TBL] [Abstract][Full Text] [Related]
45. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Andersson D; Chakrabarty R; Bejai S; Zhang J; Rask L; Meijer J Phytochemistry; 2009; 70(11-12):1345-54. PubMed ID: 19703694 [TBL] [Abstract][Full Text] [Related]
46. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Auger B; Baron C; Lucas MO; Vautrin S; Bergès H; Chalhoub B; Fautrel A; Renard M; Nesi N Planta; 2009 Nov; 230(6):1167-83. PubMed ID: 19760260 [TBL] [Abstract][Full Text] [Related]
47. Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Hasan M; Friedt W; Pons-Kühnemann J; Freitag NM; Link K; Snowdon RJ Theor Appl Genet; 2008 May; 116(8):1035-49. PubMed ID: 18322671 [TBL] [Abstract][Full Text] [Related]
48. Myrosinase: insights on structural, catalytic, regulatory, and environmental interactions. Bhat R; Vyas D Crit Rev Biotechnol; 2019 Jun; 39(4):508-523. PubMed ID: 30939944 [TBL] [Abstract][Full Text] [Related]
49. Secondary product glycosyltransferases in seeds of Brassica napus. Mittasch J; Strack D; Milkowski C Planta; 2007 Jan; 225(2):515-22. PubMed ID: 16909288 [TBL] [Abstract][Full Text] [Related]
50. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Barth C; Jander G Plant J; 2006 May; 46(4):549-62. PubMed ID: 16640593 [TBL] [Abstract][Full Text] [Related]
51. Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Zhu L; Zhao X; Xu Y; Wang Q; Wang H; Wu D; Jiang L Theor Appl Genet; 2020 Oct; 133(10):2839-2852. PubMed ID: 32617616 [TBL] [Abstract][Full Text] [Related]
52. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Jones AM; Winge P; Bones AM; Cole R; Rossiter JT Insect Biochem Mol Biol; 2002 Mar; 32(3):275-84. PubMed ID: 11804799 [TBL] [Abstract][Full Text] [Related]
53. Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. Rouzaud G; Rabot S; Ratcliffe B; Duncan AJ Br J Nutr; 2003 Aug; 90(2):395-404. PubMed ID: 12908900 [TBL] [Abstract][Full Text] [Related]
54. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529 [TBL] [Abstract][Full Text] [Related]
56. Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Hennin C; Höfte M; Diederichsen E Mol Plant Microbe Interact; 2001 Sep; 14(9):1075-85. PubMed ID: 11551072 [TBL] [Abstract][Full Text] [Related]
57. Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells. Thangstad OP; Bones AM; Holtan S; Moen L; Rossiter JT Planta; 2001 Jun; 213(2):207-13. PubMed ID: 11469585 [TBL] [Abstract][Full Text] [Related]
58. Increasing genetic variability in oilseed rape (Brassica napus) - Genotypes and phenotypes of oilseed rape transformed by wild type Agrobacterium rhizogenes. Hegelund JN; Liang C; Lauridsen UB; Kemp O; Lütken H; Müller R Plant Sci; 2018 Jun; 271():20-26. PubMed ID: 29650153 [TBL] [Abstract][Full Text] [Related]
59. Kinetics of glucosinolate hydrolysis by myrosinase in Brassicaceae tissues: A high-performance liquid chromatography approach. Pardini A; Tamasi G; De Rocco F; Bonechi C; Consumi M; Leone G; Magnani A; Rossi C Food Chem; 2021 Sep; 355():129634. PubMed ID: 33799240 [TBL] [Abstract][Full Text] [Related]
60. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene. Elhiti M; Yang C; Chan A; Durnin DC; Belmonte MF; Ayele BT; Tahir M; Stasolla C J Exp Bot; 2012 Jul; 63(12):4447-61. PubMed ID: 22563121 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]