These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12177475)

  • 1. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension.
    Rodríguez AA; Grunberg KA; Taleisnik EL
    Plant Physiol; 2002 Aug; 129(4):1627-32. PubMed ID: 12177475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity.
    Rodríguez AA; Córdoba AR; Ortega L; Taleisnik E
    J Exp Bot; 2004 Jun; 55(401):1383-90. PubMed ID: 15155779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gibberellic acid and dwarfism effects on the growth dynamics of B73 maize (Zea mays L.) leaf blades: a transient increase in apoplastic peroxidase activity precedes cessation of cell elongation.
    de Souza IR; MacAdam JW
    J Exp Bot; 2001 Aug; 52(361):1673-82. PubMed ID: 11479332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2*- levels.
    Bustos D; Lascano R; Villasuso AL; Machado E; Senn ME; Córdoba A; Taleisnik E
    Ann Bot; 2008 Oct; 102(4):551-9. PubMed ID: 18703541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abscisic acid is a key inducer of hydrogen peroxide production in leaves of maize plants exposed to water stress.
    Hu X; Zhang A; Zhang J; Jiang M
    Plant Cell Physiol; 2006 Nov; 47(11):1484-95. PubMed ID: 16990290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The mechanism of ABA-induced apoplastic H2O2 accumulation in maize leaves].
    Zhu D; Jiang MY; Tan MP
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):519-26. PubMed ID: 17075174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination.
    Li WY; Chen BX; Chen ZJ; Gao YT; Chen Z; Liu J
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28098759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress.
    Rodríguez AA; Maiale SJ; Menéndez AB; Ruiz OA
    J Exp Bot; 2009; 60(15):4249-62. PubMed ID: 19717530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of reactive oxygen intermediates (O(2)(.-), H(2)O(2), and (.)OH) by maize roots and their role in wall loosening and elongation growth.
    Liszkay A; van der Zalm E; Schopfer P
    Plant Physiol; 2004 Oct; 136(2):3114-23; discussion 3001. PubMed ID: 15466236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salinity-induced decrease in NADPH oxidase activity in the maize leaf blade elongation zone.
    Rodríguez AA; Ramiro Lascano H; Bustos D; Taleisnik E
    J Plant Physiol; 2007 Mar; 164(3):223-30. PubMed ID: 17074408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance.
    Voothuluru P; Sharp RE
    J Exp Bot; 2013 Mar; 64(5):1223-33. PubMed ID: 23071257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves.
    Hu X; Jiang M; Zhang A; Lu J
    Planta; 2005 Dec; 223(1):57-68. PubMed ID: 16049674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit.
    Zhu J; Alvarez S; Marsh EL; Lenoble ME; Cho IJ; Sivaguru M; Chen S; Nguyen HT; Wu Y; Schachtman DP; Sharp RE
    Plant Physiol; 2007 Dec; 145(4):1533-48. PubMed ID: 17951457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings.
    Menezes-Benavente L; Kernodle SP; Margis-Pinheiro M; Scandalios JG
    Redox Rep; 2004; 9(1):29-36. PubMed ID: 15035825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating of aqùaporins by light and reactive oxygen species in leaf parenchyma cells of the midrib of Zea mays.
    Kim YX; Steudle E
    J Exp Bot; 2009; 60(2):547-56. PubMed ID: 19088335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses.
    Sarath G; Hou G; Baird LM; Mitchell RB
    Planta; 2007 Aug; 226(3):697-708. PubMed ID: 17431667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings.
    Jiang M; Zhang J
    Plant Cell Physiol; 2001 Nov; 42(11):1265-73. PubMed ID: 11726712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor.
    Encina A; Fry SC
    Planta; 2005 Dec; 223(1):77-89. PubMed ID: 16049678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that hydroxyl radicals mediate auxin-induced extension growth.
    Schopfer P; Liszkay A; Bechtold M; Frahry G; Wagner A
    Planta; 2002 Apr; 214(6):821-8. PubMed ID: 11941457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of iodonium-class flavin dehydrogenase inhibitors on growth, reactive oxygen production, cell cycle progression, NADPH oxidase 1 levels, and gene expression in human colon cancer cells and xenografts.
    Doroshow JH; Gaur S; Markel S; Lu J; van Balgooy J; Synold TW; Xi B; Wu X; Juhasz A
    Free Radic Biol Med; 2013 Apr; 57():162-75. PubMed ID: 23314043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.