BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 12177490)

  • 1. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress.
    Crafts-Brandner SJ; Salvucci ME
    Plant Physiol; 2002 Aug; 129(4):1773-80. PubMed ID: 12177490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments.
    Salvucci ME; Crafts-Brandner SJ
    Plant Physiol; 2004 Apr; 134(4):1460-70. PubMed ID: 15084731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes.
    Naidu SL; Moose SP; AL-Shoaibi AK; Raines CA; Long SP
    Plant Physiol; 2003 Jul; 132(3):1688-97. PubMed ID: 12857847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus.
    Wang D; Portis AR; Moose SP; Long SP
    Plant Physiol; 2008 Sep; 148(1):557-67. PubMed ID: 18539777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temperature response of CO2 assimilation, photochemical activities and Rubisco activation in Camelina sativa, a potential bioenergy crop with limited capacity for acclimation to heat stress.
    Carmo-Silva AE; Salvucci ME
    Planta; 2012 Nov; 236(5):1433-45. PubMed ID: 22733425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of growth light and nitrogen nutrition on the organization of the photosynthetic apparatus in leaves of a C4 plant, Amaranthus cruentus.
    Tazoe Y; Noguchi K; Terashima I
    Plant Cell Environ; 2006 Apr; 29(4):691-700. PubMed ID: 17080618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2.
    Crafts-Brandner SJ; Salvucci ME
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13430-5. PubMed ID: 11069297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic flexibility in maize exposed to salinity and shade.
    Sharwood RE; Sonawane BV; Ghannoum O
    J Exp Bot; 2014 Jul; 65(13):3715-24. PubMed ID: 24692650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic acclimation to high temperatures associated with heat tolerance in creeping bentgrass.
    Liu X; Huang B
    J Plant Physiol; 2008 Dec; 165(18):1947-53. PubMed ID: 18571284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves.
    Luo HB; Ma L; Xi HF; Duan W; Li SH; Loescher W; Wang JF; Wang LJ
    PLoS One; 2011; 6(8):e23033. PubMed ID: 21887227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state.
    Crafts-Brandner SJ; Law RD
    Planta; 2000 Dec; 212(1):67-74. PubMed ID: 11219585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat.
    Yamasaki T; Yamakawa T; Yamane Y; Koike H; Satoh K; Katoh S
    Plant Physiol; 2002 Mar; 128(3):1087-97. PubMed ID: 11891263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate Carboxylase/Oxygenase.
    Law RD; Crafts-Brandner SJ
    Plant Physiol; 1999 May; 120(1):173-82. PubMed ID: 10318695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation responses in C
    Wang J; Gao H; Guo Z; Meng Y; Yang M; Li X; Yang Q
    Ecotoxicol Environ Saf; 2021 May; 214():112096. PubMed ID: 33647854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of light quality on C4 photosynthesis under steady-state conditions in Zea mays and Miscanthus×giganteus: changes in rates of photosynthesis but not the efficiency of the CO2 concentrating mechanism.
    Sun W; Ubierna N; Ma JY; Cousins AB
    Plant Cell Environ; 2012 May; 35(5):982-93. PubMed ID: 22082455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature.
    Yamori W; Masumoto C; Fukayama H; Makino A
    Plant J; 2012 Sep; 71(6):871-80. PubMed ID: 22563799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves.
    Wang LJ; Fan L; Loescher W; Duan W; Liu GJ; Cheng JS; Luo HB; Li SH
    BMC Plant Biol; 2010 Feb; 10():34. PubMed ID: 20178597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The temperature response of C(3) and C(4) photosynthesis.
    Sage RF; Kubien DS
    Plant Cell Environ; 2007 Sep; 30(9):1086-106. PubMed ID: 17661749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.
    Chen GY; Yong ZH; Liao Y; Zhang DY; Chen Y; Zhang HB; Chen J; Zhu JG; Xu DQ
    Plant Cell Physiol; 2005 Jul; 46(7):1036-45. PubMed ID: 15840641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures.
    Yamori W; Suzuki K; Noguchi K; Nakai M; Terashima I
    Plant Cell Environ; 2006 Aug; 29(8):1659-70. PubMed ID: 16898026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.